首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Single crystals of the Na4[Na2Cr2(C2O4)6] · 10H2O complex were synthesized for the first time. The structure of the complex was determined by X-ray diffraction analysis. The compound crystallizes in the monoclinic crystal system with the unit cell parameters a = 17.290(4) Å, b = 12.521(3) Å, c = 15.149(3) Å, β = 100.45(3)°, Z = 4, space group Cc. Anionic layers [NaCr(C2O4)3] 2n 4n? can be distinguished in the crystal structure of the complex. The Na+ cations and water molecules, involved in the formation of a hydrogen bond network, are located between the anionic layers.  相似文献   

2.
The complex Na3(NH4)2[Ir(SO3)2Cl4]·4H2O was examined with single crystal X-ray diffraction and IR spectroscopy. Crystal data: a = 7.3144(4) Å, b = 10.0698(5) Å, c = 12.3748(6) Å, β = 106.203(1)°, V = 875.26(8) Å3, space group P21/c, Z = 2, d calc = 2.547 g/cm3. In the complex anion two trans SO 3 2? groups are coordinated to iridium through the S atom. The splitting of O-H bending vibrations of crystallization water molecules and N-H ones of the ammonium cation is considered in the context of different types of interactions with the closest neighbors in the structure.  相似文献   

3.
Evidence for the existence of primitive life forms such as lichens and fungi can be based upon the formation of oxalates. These oxalates form as a film like deposit on rocks and other host matrices. The anhydrous oxalate mineral moolooite CuC2O4 as the natural copper(II) oxalate mineral is a classic example. Another example of a natural oxalate is the mineral wheatleyite Na2Cu2+(C2O4)2·2H2O. High resolution thermogravimetry coupled to evolved gas mass spectrometry shows decomposition of wheatleyite at 255°C. Two higher temperature mass losses are observed at 324 and 349°C. Higher temperature mass losses are observed at 819, 833 and 857°C. These mass losses as confirmed by mass spectrometry are attributed to the decomposition of tennerite CuO. In comparison the thermal decomposition of moolooite takes place at 260°C. Evolved gas mass spectrometry for moolooite shows the gas lost at this temperature is carbon dioxide. No water evolution was observed, thus indicating the moolooite is the anhydrous copper(II) oxalate as compared to the synthetic compound which is the dihydrate.  相似文献   

4.
Single crystals of Li(H3O)[UO2(C2O4)2(H2O)] · H2O (I) have been synthesized and studied by X-ray diffraction. Compound I crystallizes in the monoclinic crystal system with the unit cell parameters: a = 7.1682(10) Å, b = 29.639(6) Å, c = 6.6770(12) Å, β= 112.3(7)°, space group P 21/c, Z = 4, R = 4.36%. Structure I contains discrete mononuclear groups [UO2(C2O4)2(H2O)]2? ascribed to the crystal-chemical group AB 2 01 M1 (A = UO2 2+, B01 =C2O 4 2? , M1 = H2O), which are “cross-linked” by the lithium ions into infinite layers {Li(UO2)(C2O4)2(H2O)2}? perpendicular to [010]. The hydroxonium ions are located between adjacent uranium-containing layers. A hydrogen bond system involving water molecules, oxalate ions, and hydroxonium combines the anionic layers into a three-dimensional framework.  相似文献   

5.
The solubility in the quaternary water–salt system Zr(SO4)2 · 4Н2О–Na2SO4–H2SO4–H2O at 25°C was studied. It was found that, in the system, there is crystallization of not only Na2SO4 and Zr(SO4)4 · 4H2O, but also sodium sulfate zirconates Na2Zr(SO4)2(OH)2 · 0.3H2O, Na4Zr(SO4)4 · 3H2O, and Na2Zr(SO4)2 · 3H2O and two new compounds, S1 and S2, which are presumably Na2ZrO(SO4)2 · 2H2O and Na2Zr2O2(SO4)3 · 6H2O.  相似文献   

6.
Thermodynamic activity of sodium oxide and oxidation potential in NaOH—Na2O—Na2O2—H2O—NaH melt at the temperature of 400°C was investigated. Galvanic cell for the potentiometric measurements consisted either of a sodium electrode formed by β and β″-alumina semi-closed tube filled with liquid sodium or a platinum wire and of an oxygen electrode made from ZrO2 (Y2O3) solid electrolyte with the Bi—Bi2O3 reference mixture. The number of exchanged electrons determined from the electromotive force measurements was in good agreement with the assumed reactions. The activity coefficient of sodium oxide was lower than one. Voltammetric measurements were carried out with a sodium reference electrode and a nickel auxiliary electrode. Behaviour of platinum, gold, silver and nickel as working electrodes was studied. The experiments were carried out in nitrogen atmosphere. Several types of zirconia semi-closed tubes were tested for long-term measurements under the process conditions.  相似文献   

7.
The thermal transformations of disubstituted cesium orthophosphate crystal hydrate under heating in air up to 400°C have been studied. The dehydration process occurs in two stages with the loss of 0.6 water molecules at 60?100°C and 1.4 water molecules at 100?160°C. Anhydrous Cs2HPO4 is stable up to 300°C and is completely converted into cesium pyrophosphate Cs4P2O7 at 330°C. The structure of Cs2HPO4 · 2H2O has been determined. The compound crystallizes in monoclinic space group P21/c and has the unit cell parameters a = 7.4761(5) Å, b = 14.2125(8) Å, c = 7.9603(6) Å, β = 116.914(5)°, V = 754.20(9) Å3, and Z = 4 at?123°C. An earlier unknown polymorph of Cs4P2O7 has been found. According to X-ray powder diffraction data, hexagonal space group Р63 has been proposed for the formed pyrophosphate.  相似文献   

8.
Nanocrystalline NH4ZrH(PO4)2·H2O was synthesized by solid-state reaction at low heat using ZrOCl2·8H2O and (NH4)2HPO4 as raw materials. X-ray powder diffraction analysis showed that NH4ZrH(PO4)2·H2O was a layered compound with an interlayer distance of 1.148 nm. The thermal decomposition of NH4ZrH(PO4)2·H2O experienced four steps, which involves the dehydration of the crystal water molecule, deamination, intramolecular dehydration of the protonated phosphate groups, and the formation of orthorhombic ZrP2O7. In the DTA curve, the three endothermic peaks and an exothermic peak, respectively, corresponding to the first three steps' mass losses of NH4ZrH(PO4)2·H2O and crystallization of ZrP2O7 were observed. Based on Flynn–Wall–Ozawa equation and Kissinger equation, the average values of the activation energies associated with the NH4ZrH(PO4)2·H2O thermal decomposition and crystallization of ZrP2O7 were determined to be 56.720 ± 13.1, 106.55 ± 6.28, 129.25 ± 4.32, and 521.90 kJ mol−1, respectively. Dehydration of the crystal water of NH4ZrH(PO4)2·H2O could be due to multi-step reaction mechanisms: deamination of NH4ZrH(PO4)2 and intramolecular dehydration of the protonated phosphate groups from Zr(HPO4)2 are simple reaction mechanisms.  相似文献   

9.
The Cs2HPO4 · 2H2O single crystals synthesized from an aqueous solution containing equimolar amounts of H3PO4 and Cs2CO3 were studied by impedance and IR spectroscopy, X-ray diffraction analysis, and differential scanning calorimetry (DSC). The IR spectra were analyzed in accordance with the structural data, and the absorption bands were assigned. The proton conductivity was studied at temperatures in the range 20–250°C. The conductivity of dehydrated Cs2HPO4 was low, ~10–5–10–9 S cm–1 at 90–250°C with an activation energy of conductivity E a = 1.1 eV at 130–250°C. The processes determining the character of the temperature dependence of conductivity were consistent with the DSC and thermogravimetry data. According to these data, dehydration of the crystalline hydrate Cs2HPO4 · 2H2O starts at 60°C and occurs in three stages, forming Cs2HPO4 · 1.5H2O below 100°C; anhydrous Cs2HPO4 at t > 160°C, which is stable up to 300°C; and Cs4P2O7 above 330°C.  相似文献   

10.
The single phase NH4NiPO4·6H2O was synthesized by solid-state reaction at room temperature using NiSO4·6H2O and (NH4)3PO4·3H2O as raw materials. XRD analysis showed that NH4NiPO4·6H2O was a compound with orthorhombic structure. The thermal process of NH4NiPO4·6H2O experienced three steps, which involves the dehydration of the five crystal water molecules at first, and then deamination, dehydration of the one crystal water, intramolecular dehydration of the protonated phosphate groups together, at last crystallization of Ni2P2O7. In the DTA curve, the two endothermic peaks and an exothermic peak, respectively, corresponding to the first two steps’ mass loss of NH4NiPO4·6H2O and crystallization of Ni2P2O7. Based on Flynn–Wall–Ozawa equation, and Kissinger equation, the average values of the activation energies associated with the thermal decomposition of NH4NiPO4·6H2O, and crystallization of Ni2P2O7 were determined to be 47.81, 90.18, and 640.09 kJ mol−1, respectively. Dehydration of the five crystal water molecules of NH4NiPO4·6H2O, and deamination, dehydration of the crystal water of NH4NiPO4·H2O, intramolecular dehydration of the protonated phosphate group from NiHPO4 together could be multi-step reaction mechanisms. Besides, the thermodynamic parameters (ΔH , ΔG , and ΔS ) of the decomposition reaction of NH4NiPO4·6H2O were determined.  相似文献   

11.
Single crystals of Mg pivalate hydrate, Mg(H2O)6(Piv)2 · 3H2O (HPiv = (CH3)3CCOOH) are synthesized and their structure is determined by X-ray diffraction method. The crystals are rhombic: a = 10.917(2) Å, b = 12.625(2) Å, c = 31.394(8) Å, Z = 8, space group Pbca, R 1 = 0.0525. The Mg atom has octahedral surrounding of the O atoms of water molecules (Mg-O 2.044–2.137 Å). The cationic chains of [Mg(H2O)6] 2+ lie in the voids of doubled network anionic layers of [(H2O)3(Piv)2] ∞∞ 2? . Inside the layer, the pivalate anions alternate with water molecules in the xy plane, being bonded to them by hydrogen bonds. The cationic chains and the anionic layers are united into layered packs by hydrogen bonds between coordinated water molecules and pivalate anions and between coordinated and crystal hydrate water molecules.  相似文献   

12.
Binuclear iron nitrosyl complex Na2[Fe2(S2O3)2(NO)4] · 4H2O (I) was synthesized by the reaction of iron(II) sulfate with sodium thiosulfate in the flow of NO gas. According to X-ray diffraction data, the [Fe2(S2O3)2(NO)4]2– anion has binuclear centrosymmetric structure with Fe atoms bonded by the µ-S atoms of thiosulfate groups. The isomeric shift for complex I =0.168(1) mm/s and quadrupole splitting E Q =1.288 mm/s at T=80 K. When heated, complex I transforms to Na2[Fe2(S2O3)2(NO)4] (II), whose unit cell parameters found by X-ray diffraction method differ from those of complex I. The process of transformation of I to II was studied by calorimetric method. Complex I transforms to complex II without chemical decomposition, which was confirmed by IR and mass spectroscopy data.__________Translated from Koordinatsionnaya Khimiya, Vol. 31, No. 5, 2005, pp. 323–328.Original Russian Text Copyright © 2005 by Sanina, Aldoshin, Rudneva, Golovina, Shilov, Shulga, Martynenko, Ovanesyan.  相似文献   

13.
[Cd(NTO)4Cd(H2O)6] •4H2O was synthesized by mixing the aqueous solution of 3-nitro-1, 2,4-triazol-5-one (NTO) and cadmium carbonate. The single crystal structure was determined by a four-circle X-ray diffractometer. The crystal is monoclinic, space group C2/c with crystal parameters of a = 2.1229(3) nm, b = 0.6261(8) nm, = 2.1165(3) nm, β= 90.602 (3)°, V= 2.977(6) nm3, Z = 4, Dc = 2.055 g • cm-3, μ = 15.45 cm-1 and F(000) = 1824. 2523 observable independent reflections with F04σ(F0) were used for the determination and refinement of the crystal structure. Lorentz-polarization and absorption correction were applied. The final R is 0.0282 and wR = 0.0792. The analytical results show that the Cd+2 has two kinds of coordinate bonds in one crystal. One Cd+2 coordinates with 4 NTO anions and another coordinates with 6 water molecules to form a binucleate complex with a structure of tetrahedron and tetragonal bipyramid, respectively. By using SCF-PM3-MO method, the electron structure of cadmium complex of NTO has been calculated. The analysis of the calculated results shows that when [Cd(NTO)4Cd(H2O)6] • 4H2O is heated, the crystallization waters will be dissociated first and the ligand waters second and NO2 group has priority of leaving when NTO is decomposed. Analysis of the energy level and composition of localized molecular orbitals indicates that both the two Cd2+ bond to the coordinating atom with 5s  相似文献   

14.
The structure of the salt Cs[Gd(H2O)4Re6Te8(CN)6]·4H2O (space group P-1, a = 9.436(5) Å, b = 12.365(7) Å, c = 15.187(8)Å, α = 89.104(10)°, β = 86.996(10)°, γ = 82.304(9)°) has been established by single crystal XRD. The structure of the compound features layers involving Gd3+ cations bound to cluster anions [Re6Te8(CN)6]4? through cyanide groups. The interlayer space contains cesium cations and crystallization water molecules.  相似文献   

15.
A novel complex, Cu2[(Dmbiim)4H2O](ClO4)4·3H2O (Dmbiim = 1.1′-dimethyl-2.2′-biimida-zole), has been synthesized and studied by X-ray crystallography. Crystal data for CuO9N8C16Cl2H22: a = 10.160(2) Å, b = 12.991(3) Å, c = 20.646(4) Å, β = 101.443(3)°, space group P2(1)/c, Z = 4, d calc = 1.504 g/cm3, R = 0.0718. The crystal structure reveals that the complex is cage-shaped, with two Cu ions bridged by Dmbiim and each Cu ion chelated by the oxygen atom of water and four nitrogen atoms of Dmbiim.  相似文献   

16.
Single crystals of Cs[(UO2)2(C2O4)2(OH)] · H2O were synthesized and structurally studied using X-ray diffraction. The compound crystallizes in monoclinic space group P21/m, Z = 2, with the unit cell parameters a = 5.5032(4) Å, b = 13.5577(8) Å, c = 9.5859(8) Å, β = 97.012(3)°, V = 709.86(9) Å3, R = 0.0444. The main building units of crystals are [(UO2)2(C2O4)2(OH)]? layers of the A2K 2 02 M2 (A = UO 2 2+ , K02 = C2O 4 2? , and M2 = OH?) crystal-chemical family. Uranium-containing layers are linked into a three-dimensional framework via electrostatic interactions with outer-sphere cations and hydrogen bonds with water molecules.  相似文献   

17.
Partial dehydration of Dy2(SO4)3·8H2O was studied employing TG, DSC, D.C. electrical conductivity and spectroscopic techniques. The possible mechanism for the loss of water molecules (partial dehydration) was found to be random nucleation obeying Mapel equation based on TG trace. The DSC traces are supports the results of TG traces and are also utilized to understand the enthalpy changes accompanying the partial dehydration and phase transition accompanying the dehydrated samples. D.C. electrical conductivity studies are attempted to supplement these TG studies. Attempts are made to explain the structural changes accompanying dehydration on the basis of infrared spectra and X-ray diffraction and scanning electron microscopic studies.  相似文献   

18.
In this work, we present first data on the infrared and Raman spectroscopic characteristics, thermal analysis and solid-state transformations of Mg2KH(AsO4)2·15H2O, which is a unique example of an acid salt containing dimeric units [H(AsO4)2] in its crystal structure. The infrared and Raman spectra recorded at ambient conditions have been studied, and an assignment of the observed vibrational bands has been proposed considering the crystal structure data. The thermal behavior of Mg2KH(AsO4)2·15H2O has been investigated by simultaneous TG/DTA/mass spectrometry experiments in the temperature range up to 1000 °C at different heating rates, and new data on the thermal stability and thermal dehydration of Mg2KH(AsO4)2·15H2O have been obtained. The phase composition after the dehydration processes in the temperature interval of 300–650 °C has been studied by combination of powder XRD and IR spectroscopic analyses. The spectroscopic and thermal properties of Mg2KH(AsO4)2·15H2O have been compared to those of the isostructural phosphate salt Mg2KH(PO4)2·15H2O.  相似文献   

19.
The crystal structure of complex [Mg(H2O)6][VO(edta)] · 3.5H2O (I) was determined by X-ray diffraction study. The crystals are monoclinic, a = 6.779 Å, b = 13.373(6) Å, c = 25.054 Å, β = 96.55°, Z = 4, space group P21. The unit cell contains two independent [VO(edta)]2? anions, two independent [Mg(H2O)6]2+ cations, and seven crystal-water molecules. The coordination polyhedron of each vanadium atom is formed by five donor atoms of the edta ligand (2N + 3O) (V(1)-N(1), 2.278 Å; V(1)-N(2), 2.149 Å; V(2)-N(3), 2.301 Å; V(2)-N(4), 2.165 Å; V-O(acet), 2.00 ± 0.02 Å) and the oxygen atom of the oxo group (V-O, 1.60 ± 0.01 Å). The edta ligands and the vanadium atom form three glycinate rings: two R-type rings and one G-type ring (one acetate branch remains free), as well as an E-type ring with an asymmetric gauche configuration. The [Mg(H2O)6] cations are slightly distorted octahedra (Mg-O, 2.013–2.132 Å, the OMgO angles are 86.6°–94.2°). The H2O molecules form a bifurcate system of H-bonds. The crystals of compound I belong to OD-type structures with an incomplete ordering of layers.  相似文献   

20.
The non-isothermal kinetics of dehydration of AlPO4·2H2O was studied in dynamic air atmosphere by TG–DTG–DTA at different heating rates. The result implies an important theoretical support for preparing AlPO4. The AlPO4·2H2O decomposes in two step reactions occurring in the range of 80–150 °C. The activation energy of the second dehydration reaction of AlPO4·2H2O as calculated by Kissinger method was found to be 69.68 kJ mol−1, while the Avrami exponent value was 1.49. The results confirmed the elimination of water of crystallization, which related with the crystal growth mechanism. The thermodynamic functions (ΔH*, ΔG* and ΔS*) of the dehydration reaction are calculated by the activated complex theory. These values in the dehydration step showed that it is directly related to the introduction of heat and is non-spontaneous process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号