首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
In this study, we described a high‐sensitive on‐line preconcentration method for cypromazine (CYP) and melamine (MEL) analysis using cation‐selective exhaustive injection (CSEI) combined with sweeping‐MEKC. The optimum conditions of on‐line concentration and separation were discussed. The BGE contained 100 mM SDS, 50 mM phosphoric acid (pH=2.0) and 15% acetonitrile (v/v). The sample was injected at 10 kV for 600 s, separated at ?20 kV, and detected at 210 nm. The sensitivity enhancements were 6222 for CYP and 9179 for MEL. The linear dynamic ranges were 0.4?25 ng/mL for CYP (r=0.9995) and 0.2?12 ng/mL for MEL (r=0.9991). The LODs (signal‐to‐noise ratio, 3) were 43.7 and 23.4 pg/mL for CYP and MEL, respectively. The proposed method was applied to analyze CYP and MEL in dairy products pretreated using off‐line SPE to minimize the influence of the matrix. The recoveries of CYP and MEL were satisfactory (ca. 74–83%). The experimental results suggest that the CSEI‐sweeping‐MEKC method is feasible for the application to simultaneously detect trace levels of CYP and its metabolite MEL in real milk samples.  相似文献   

2.
A novel and simple method that combines an online concentration technique with an enantioseparation technique for capillary electrophoresis—namely, cation‐selective exhaustive injection and sweeping cyclodextrin‐modified micellar electrokinetic chromatography (CSEI‐sweeping CD‐modified MEKC)—realizes the effective enantioseparation of cationic analytes while keeping a significant increase of detection sensitivity. This technique consists of a slight modification of the basic CSEI‐sweeping MEKC. The main idea is to simply add an anionic CD as a chiral selector into the micellar buffer including sodium dodecyl sulfate, but not to change any other buffers in order to preserve the online concentration mechanism. When applied to analysis of the street drug, methamphetamine, the method achieved not only a baseline enantioseparation but also limits of detection (LODs; S/N = 3) of 70–90 pg/mL (ppt) for each isomer. This translates to a more than 10 000‐fold improvement compared to the LODs by the usual injection method. The present technique, which was made from a slight modification of CSEI‐sweeping MEKC, would give an attractive approach that is applicable to almost any analytes for which CSEI‐sweeping MEKC is applicable; all that is required is the selection of an appropriate anionic CD to be added to the micellar buffer.  相似文献   

3.
Paliperidone is a new antipsychotic drug with a relatively low therapeutic concentration of 20–60 ng/mL. We established an accurate and sensitive CE method for the determination of paliperidone concentrations in human plasma in this study. To minimize matrix effect caused by quantification errors, paliperidone was extracted from human plasma using Oasis HLB SPE cartridges with three‐step washing procedure. To achieve sensitive quantification of paliperidone in human plasma, a high‐conductivity sample solution with sweeping‐MEKC method was applied for analysis. The separation is performed in a BGE composed of 75 mM phosphoric acid, 100 mM SDS, 12% acetonitrile, and 15% tetrahydrofuran. Sample solution consisted of 10% methanol in 250 mM phosphoric acid and the conductivity ratio between sample matrix and BGE was 2.0 (γ, sample/BGE). The results showed it able to detect paliperidone in plasma samples at concentration as low as 10 ng/mL (S/N = 3) with a linear range between 20 and 200 ng/mL. Compared to the conventional MEKC method, the sensitivity enhancement factor of the developed sweeping‐MEKC method was 100. Intra‐ and interday precision of peak area ratios were less than 6.03%; the method accuracy was between 93.4 and 97.9%. This method was successfully applied to the analysis of plasma samples of patients undergoing paliperidone treatment.  相似文献   

4.
Cation‐selective exhaustive injection and sweeping followed by a MEKC separation is evaluated for the sensitive analysis of 5‐nitroimidazoles in untreated human serum and urine. Deproteinized serum and urine samples were diluted 76 and 143 times, respectively, in a low‐conductivity solvent (5.00 mM orthophosphoric acid containing 5.0% v/v methanol). Samples were electrokinetically injected at 9.8 kV for 632 s in a previously conditioned fused‐silica capillary (65.0 cm × 50 μm id). Separation was performed at –30 kV and 20°C using 44 mM phosphate buffer (pH 2.5), 123 mM SDS, and 8% v/v tetrahydrofurane as BGE. Signals were monitored at 276 nm and peak area was selected as analytical response. Good linearity (R2 ≥ 0.988) and LODs lower than 1.5 and 1.8 μg/mL were achieved in serum and urine, respectively.  相似文献   

5.
Su HL  Feng LI  Jen HP  Hsieh YZ 《Electrophoresis》2008,29(20):4270-4276
We have employed a high-sensitivity on-line preconcentration method, cation-selective exhaustive injection (CSEI) and sweeping MEKC, for the analysis of cocaine, benzoylecgonine, norcocaine, and cocaethylene. We monitored the effects of several of the CSEI-sweeping-MEKC parameters - including the pH, the concentrations of SDS and organic modifier, the injection length of the high-conductivity buffer, and the injection time of the sample - to optimize the separation process. The optimal BGE was 100 mM phosphoric acid (pH 1.8) containing 75 mM SDS with 10% 2-propanol and 10% tetrahydrofuran as the organic modifier. In addition, electrokinetic injection of the sample at 15 kV for 900 s provided both high separation efficiency and enhanced sweeping sensitivity. The sensitivity enhancements for cocaine, norcocaine, and cocaethylene ranged from 2.06 x 10(4) to 3.96 x 10(4); for benzoylecgonine it was 1.75 x 10(3); the coefficients of determination exceeded 0.9958. The LODs, based on an S/N ratio of 3:1, of sweeping-MEKC ranged from 33.5 to 52.8 ng/mL; in contrast, when using CSEI-sweeping-MEKC the sensitivity increased to range from 29.7 to 236 pg/mL. Under the optimal conditions, we analyzed cocaine in a human urine sample prepared using off-line SPE to minimize the influence of the matrix. The recovery of the SPE efficiency was satisfactory (ca. 74.9-87.6%). Our experimental results suggest that, under the optimal conditions, the CSEI-sweeping-MEKC method can be used to determine cocaine and its metabolites with high sensitivity in human urine.  相似文献   

6.
《Electrophoresis》2018,39(16):2099-2106
A method consisting of cation‐selective exhaustive injection and sweeping (CSEI‐sweeping) as online preconcentration followed by a cyclodextrin modified electrokinetic chromatography (CDEKC) enantioseparation has been developed for the simultaneous determination of two brompheniramine enantiomers in rat plasma. In this method, analytes were electrokinetically injected at a voltage of 8 kV for 80 s in a fused‐silica capillary. Prior to the injection, the capillary was rinsed with 50 mM phosphate buffer of pH 3.5, followed by a plug of a higher conductivity buffer (150 mM phosphate pH 3.5, 20 psi, 6 min) and a plug of water (0.5 psi, 5 s). Separation was carried out applying –20 kV in 50 mM phosphate buffer, pH 3.5, containing 10% v/v ACN and 30 mg/mL sulfated‐β‐cyclodextrin (S‐β‐CD). Analytical signals were monitored at 210 nm. The detection sensitivity of brompheniramine enantiomers was enhanced by about 2400‐fold compared to the normal injection mode (hydrodynamic injection for 3 s at 0.5 psi, with a BGE of 50 mM phosphate buffer containing 20 mg/mL S‐β‐CD at pH 3.5), and LLOQ of two enantiomers were both 0.0100 μg/mL. In addition, this method had fairly good repeatability and showed promising capabilities in the application of stereoselective pharmacokinetic investigations for brompheniramine enantiomers in rat.  相似文献   

7.
A simple and sensitive analytical method for four isomers of glycopyrrolate in rat plasma was developed using cation‐selective exhaustive injection‐sweeping cyclodextrin‐modified electrokinetic chromatography (CSEI‐Sweeping‐CDEKC) for online enrichment combined with dispersive micro‐solid‐phase extraction pretreatment. The CSEI‐Sweeping‐CDEKC was conducted on an uncoated fused silica capillary (40.2 cm × 75 μm) with an applied voltage of –20 kV. The electrophoretic analysis was carried out in 30 mM phosphate solution at pH 2.0 containing 20 mg/mL sulfated‐β‐cyclodextrin and 5% acetonitrile. Under these optimized conditions, the detection limit for racemic glycopyrrolate was found to be 2.0 ng/mL and this method could increase 495‐fold detection sensitivity compared with the traditional injection method. Additionally, the parameters that affected the extraction efficiency of dispersive micro‐solid‐phase extraction were also examined systematically. The glycopyrrolate isomers in rat plasma samples as low as 0.0625 μg/mL were able to be separated and detected by capillary electrophoresis with the aid of CSEI‐sweeping. The findings of this study show that the dispersive micro‐solid‐phase extraction pretreatment coupled with CSEI‐Sweeping‐CDEKC is a rapid and convenient method for analyzing glycopyrrolate isomers in rat plasma.  相似文献   

8.
A separation method for O6‐benzylguanine (O6‐BG) and 8‐oxo‐O6‐benzylguanine (8‐oxo‐O6‐BG) is developed by using MEKC. This study includes the optimization of separation and incubation parameters for both off‐line and on‐line procedures. The BGE consisted of 25 mM sodium phosphate buffer‐methanol (70:30, v/v), apparent pH 7.4, in which SDS and methyl‐β‐cyclodextrin were dissolved yielding final concentrations of 50 and 15 mM, respectively. Separations were performed at 15 kV using an untreated fused‐silica capillary (40 cm length, effective length is 30 cm) with the detection wavelength at 195 nm. The capillary was kept at 15°C. Good performances were demonstrated for the repeatability and linearity. The LOQ was determined to be 14 μM for 8‐oxo‐O6‐BG (S/N = 10). The accuracy values showed a bias of +7.9% for 50 μM and –7.0% for 100 μM. Premix and transverse diffusion of laminar flow profiles (TDLFP) methods were used for on‐line mixing and reaction of the substrate O6‐BG with aldehyde oxidase. Both procedures were successful in mixing as well as subsequent separation of the substrate and the metabolite, while the repeatability of TDLFP (14.7% (n = 3)) was much better than the premix technique.  相似文献   

9.
Complete resolution of hydroxyeicosatetraenoic acid (HETE) enantiomers was achieved using hydroxypropyl‐γ‐cyclodextrin (HP‐γ‐CD)‐modified MEKC. The optimum running conditions were determined to be utilizing a 30 mM phosphate–15 mM borate buffer (pH 9.0) containing 30 mM HP‐γ‐CD and 75 mM SDS as the BGE, application of +30 kV as the effective voltage, and carrying out the experiment at 15°C. The eluents were detected at 235 nm. The method was used successfully for the simultaneous separations of (S)‐ and (R)‐enantiomers of regioisomeric 8‐, 11‐, 12‐, and 15‐HETEs. Subsequently, the optimized method was applied to evaluate the stereochemistry of 8‐ and 12‐HETEs from the marine red algae, Gracilaria vermiculophylla and Gracilaria arcuata, respectively. The 8‐HETE was found to be a mixture of 98% (R)‐enantiomer and 2% (S)‐enantiomer, while the 12‐HETE was a mixture of 98% (S)‐enantiomer and 2% (R)‐enantiomer. The present study demonstrates that the HP‐γ‐CD‐modified MEKC method is simple and sensitive and provides unambiguous information on the configuration of natural and synthetic HETEs.  相似文献   

10.
Several strategies, namely, large volume sample stacking (LVSS), field‐amplified sample injection (FASI), sweeping, and in‐line SPE‐CE, were investigated for the simultaneous separation and preconcentration of a group of parabens. A BGE consisting of 20 mM sodium dihydrogenphosphate (pH 2.28) and 150 mM SDS with 15% ACN was used for the separation and preconcentration of the compounds by sweeping, and a BGE consisting of 30 mM sodium borate (pH 9.5) was used for the separation and preconcentration of the compounds by LVSS, FASI, and in‐line SPE‐CE. Several factors affecting the preconcentration process were investigated in order to obtain the maximum enhancement of sensitivity. The LODs obtained for parabens were in the range of 18–27, 3–4, 2, and 0.01–0.02 ng/mL, and the sensitivity evaluated in terms of LODs was improved up to 29‐, 77‐, 120‐, and 18 400‐fold for sweeping, LVSS, FASI, and in‐line SPE‐CE, respectively. These preconcentration techniques showed potential as good strategies for focusing parabens. The four methods were validated with standard samples to show the potential of these techniques for future applications in real samples, such as biological and environmental samples.  相似文献   

11.
The aim of the present study is the CE performance evaluation for the separation of 2‐arylpropionic acid nonsteroidal anti‐inflammatory drugs. In particular, the separation of indoprofen, carprofen, ketoprofen, ibuprofen, and flurbiprofen was obtained by supporting the BGE either with SDS or an amino acid ester‐based ionic liquid (AAIL). The performance of these additives was evaluated by comparing migration times, efficiencies and %RSD values. The addition of the AAIL into the BGE provided baseline separation within 10 min, while in the case of SDS, the analytes eluted within 23 min. The optimum conditions involve a BGE of 100 mM Tris/10 mM sodium tetraboratedecahydrate (pH 8) and 40 mM l ‐alanine tert butyl ester lactate or 10 mM SDS and a temperature of 35°C for AAIL and 20°C for SDS. The run‐to‐run reproducibility was evaluated by computing the %RSD values of the EOF and the analyte peaks. When the AAIL was used, an excellent reproducibility was obtained, since all %RSD values were below 1.3%. On the contrary, the addition of SDS resulted in much higher RSD values (2.1–11.7%). The efficiency values of all analyte peaks were above 102 000 for l ‐AlaC4Lac, in comparison to SDS, which provided efficiency values between 47000 and 76000. Finally, in an attempt to study the synergistic effect of SDS and AAIL, both additives were added into the BGE at concentrations of 10 and 40 mM, respectively. The results were similar to the ones obtained when SDS was used as the sole additive.  相似文献   

12.
《Electrophoresis》2017,38(9-10):1292-1300
The present work deals with the development and validation of a novel dual CD‐MEKC system for the systematic flavonoid fingerprinting of Ligaria cuneifolia (R. et P.) Tiegh.—Loranthaceae—extracts. The BGE consisted of 20 mM pH 8.3 borate buffer, 50 mM SDS, a dual CD system based on the combination of 5 mM β‐CD and 2% w/v S‐β‐CD, and 10% v/v methanol. The proposed method has been successfully applied to the comparative analysis of extracts from aerial parts and different hosts, geographical areas, and extraction procedures in order to establish the flavonoid fingerprint of L. cuneifolia . The method was validated according to international guidelines. LOD and LOQ, intra and interday precision, and linearity were determined for catechin, epicatechin, procyanidin B2, rutin, quercetin‐3‐O‐glucoside, quercetin‐3‐O‐xyloside, quercetin‐3‐O‐rhamnoside, quercetin‐3‐O‐arabinofuranoside, quercetin‐3‐O‐arabinopyranoside, and quercetin. The CD‐MEKC methodology emerges as a suitable alternative to the traditional HPLC for quality control, fingerprinting, and standardization of L. cuneifolia extracts from different sources.  相似文献   

13.
One CE method was established for detecting deferoxamine (DFO) and deferiprone (DFR) in plasma. For β‐thalassemia patients, DFO and DFR are major medicines to treat the iron overload caused by blood transfusion. Field‐amplified sample injection combined with sweeping was used for sensitivity enhancement in CE. This method was performed on an uncoated fused‐silica capillary. After liquid–liquid extraction, the plasma samples were electrokinetically injected into capillary at +10 kV for 180 s. The phosphate buffer (100 mM) containing 50 mM triethanolamine was used as the BGE (pH 6.6). Separation buffer was phosphate buffer (100 mM, pH 3.0) containing 150 mM SDS. This method showed good linearity (r ≥ 0.9960). Precision and accuracy were evaluated by the results of RSD and relative error of intrabatch and interbatch analyses, and all of the absolute values were less than 6.12%. The LODs (S/N = 3) were 200 ng/mL for DFO, and 25 ng/mL for DFR. The LOQ (S/N = 10) of DFO and DFR were 600 and 75 ng/mL, respectively. This method was applied for clinical applications of five β‐thalassemia patients.  相似文献   

14.
The aim of this work was to clarify the mechanism taking place in field‐enhanced sample injection coupled to sweeping and micellar EKC (FESI‐Sweep‐MEKC), with the utilization of two acidic high‐conductivity buffers (HCBs), phosphoric acid or sodium phosphate buffer, in view of maximizing sensitivity enhancements. Using cationic model compounds in acidic media, a chemometric approach and simulations with SIMUL5 were implemented. Experimental design first enabled to identify the significant factors and their potential interactions. Simulation demonstrates the formation of moving boundaries during sample injection, which originate at the initial sample/HCB and HCB/buffer discontinuities and gradually change the compositions of HCB and BGE. With sodium phosphate buffer, the HCB conductivity increased during the injection, leading to a more efficient preconcentration by staking (about 1.6 times) than with phosphoric acid alone, for which conductivity decreased during injection. For the same injection time at constant voltage, however, a lower amount of analytes was injected with sodium phosphate buffer than with phosphoric acid. Consequently sensitivity enhancements were lower for the whole FESI‐Sweep‐MEKC process. This is why, in order to maximize sensitivity enhancements, it is proposed to work with sodium phosphate buffer as HCB and to use constant current during sample injection.  相似文献   

15.
A sensitive and reliable method based on MEKC has been developed and validated for trace determination of neonicotinoid insecticides (thiamethoxam, acetamiprid, and imidacloprid) and the metabolite 6‐chloronicotinic acid in water and soil matrices. Optimum separation of the neonicotinoid insecticides was obtained on a 58 cm long capillary (75 μm id) using as the running electrolyte 40 mM SDS, 5 mM borate (pH 10.4), and 5% (v/v) methanol at a temperature of 25°C, a voltage of 25 kV and with hydrodynamic injection (10 s). The analysis time was less than 7 min. Prior to MEKC determination, the samples were purified and enriched by carrying out extraction‐preconcentration steps. For aqueous samples, off‐line SPE with a sorptive material such as Strata‐X (polymeric hydrophobic sorbent) and octadecylsilane (C18) was carried out to clean up and preconcentrate the insecticides. However, for soil samples, matrix solid‐phase dispersion (MSPD) was applied with C18 used as the dispersant. Good linearity, accuracy, and precision were obtained and the detection limits were in the range between 0.01 and 0.07 μg mL?1 for river water and 0.17 and 0.37 μg g?1 for soil samples. Recovery levels reached greater than 92% for all of the assayed neonicotinoids in river water samples with Strata‐X. In soil matrices, the best recoveries (63–99%) were obtained with MSPD.  相似文献   

16.
In view of the fact that several studies have shown that diclofenac hydroxylation by cytochrome P450 2C9 deviated from Michaelis–Menten kinetics at low substrate concentrations, sweeping combined with MEKC was applied for the kinetic study of this pharmacologically important reaction. A 50 μm fused silica capillary (56 cm effective length) was used to carry out all separations. 70 mM SDS in 20 mM phosphate 20 mM tetraborate buffer, pH 8.6, was used as the BGE. Injection was accomplished by the application of 50 mbar (5 kPa) pressure to the sample vial for 52 s. Separation was performed at 22 kV (positive polarity), with a capillary temperature of 25°C and detection at 200 nm. The higher sensitivity of the sweeping‐MEKC combination compared with the simple MEKC method enabled this reaction to be fitted to a Hill kinetic model and confirmed the findings of other authors. A Michaelis constant of 2.91±0.10 μM, maximum reaction velocity of 9.16±0.16 nmol/min/nmol and Hill coefficient of 1.66±0.08 were determined. This value of Hill coefficient confirms the presence of a positive cooperativity at low diclofenac concentrations and supports the hypothesis of two substrates binding at or near the active site.  相似文献   

17.
Dispersive liquid–liquid microextraction has been proposed as an extraction technique combined with micellar electrokinetic chromatography (MEKC) for the analysis of eight 5‐nitroimidazole compounds, including some metabolites, in water samples. Determination has been carried out using a diode array detector, employing 20 mM sodium phosphate and 150 mM SDS as separation buffer. Separation has taken place under a voltage of 25 kV and a temperature of 20°C. Samples were prepared in a buffer without micelles and they were hydrodynamically injected at 50 mbar for 25 s, producing a sweeping effect on the analytes for increasing sensitivity. Different factors involved in the dispersive liquid–liquid microextraction procedure were optimized, such as sample pH, nature, and volume of extraction and dispersive solvents in the mixture, percentage of NaCl added to sample and shaking time after the injection of the extraction and dispersive solvents. The method was characterized for water samples, achieving detection limits lower than 2.4 μg/L. Trueness was checked in river, tap, and bottled water. Dispersive liquid–liquid microextraction combined with MEKC constitutes an easy, cheap, and green alternative for 5‐nitroimidazole analysis in environmental water samples.  相似文献   

18.
A selective and low‐cost CD‐MEKC method under acidic conditions was developed for investigating the N‐oxygenation of tamoxifen (TAM) by flavin‐containing monooxygenases (FMOs). The inhibitory effects of methimazole (MMI), nicotine and 5,6‐dimethylxanthenone‐4‐acetic acid (DMXAA) on the given FMO reaction were also evaluated; 100 mM phosphate buffer (pH 8.6) was used for performing the enzymatic reaction and the separation of TAM and its metabolite tamoxifen N‐oxide (TNO) was obtained with a BGE consisting of 100 mM phosphoric acid solution adjusted to pH 2.5 with triethanolamine containing 50 mM sodium taurodeoxycholate, 20 mM carboxymethyl β‐CD and 20% ACN. The proposed method was applied for the kinetics study of FMO1 using TAM as a substrate probe. A Michaelis–Menten constant (Km) of 164.1 μM was estimated from the corrected peak area of the product, TNO. The calculated value of the maximum reaction velocity (Vmax) was 3.61 μmol/min/μmol FMO1; 50% inhibitory concentration and inhibition constant (Ki) of MMI, the most common alternate substrate FMO inhibitor, were evaluated and the inhibitory effects of two other important FMO substrates, nicotine and DMXAA, a novel anti‐tumour agent, were investigated.  相似文献   

19.
在胶束电动色谱法的基础上,联用阳离子选择性耗尽进样技术,对盐酸异丙嗪和磷酸可待因同时测定的方法进行了研究。考察了pH值、有机溶剂、SDS浓度、进样时间、进样电压等实验条件对分离效果的影响。最佳实验条件为:缓冲体系16%乙腈+80 mmol/L SDS+20 mmol/L NaH2PO4(pH2.4),分离电压为-18 kV,测量波长214 nm,萃取液pH2.4,进样电压10 kV,进样时间100 s。在优化实验条件下,两种物质在8 min内出峰,峰面积RSD不大于4.6%。盐酸异丙嗪、磷酸可待因的线性范围分别为0.50~81.3、0.78~62.5μg/L,检出限分别为0.16、0.12μg/L,相关系数分别为0.998 9、0.998 8。将方法用于可非糖浆中盐酸异丙嗪与磷酸可待因的测定,回收率为96%~106%。  相似文献   

20.
A comparison between chiral cyclodextrin‐modified microemulsion electrokinetic chromatography (CD‐MEEKC) and cyclodextrin‐modified micellar electrokinetic chromatography (CD‐MEKC) for the enantiomeric separation of esbiothrin was carried out. For both methods, the separation conditions were optimized by varying CD types and concentration, running buffer pH and compositions, organic modifiers, and temperature. The optimal CD‐MEEKC conditions were 0.8% n‐heptane, 2.3% SDS, 6.6% n‐butanol, 90.3% 10 mM sodium tetraborate containing 3% (w/v, the ratio of CD mass to microemulsion volume) methyl‐β‐cyclodextrin, pH 10, 25°C. The optimized CD‐MEKC conditions were 3.3% SDS, 96.7% 10 mM sodium tetraborate containing 5% (w/v) β‐CD, pH 10, 25°C. The difference in physicochemical properties of the buffer and CDs resulted in different optimal CD type. The competitive distribution between the microemulsion (or micelle) and chiral CD contributed to the chiral separation. Both methods provided excellent separation (Rs ~? 3) with similar migration time (ca. 15 min). CD‐MEEKC provided higher separation efficiencies (>300000) than CD‐MEKC (>200000). The LODs for CD‐MEEKC and CD‐MEKC were 4.7 μg/mL and 3.2 μg/mL, respectively. The RSDs of migration time and peak area for CD‐MEEKC were slightly higher than for CD‐MEKC. Both the demonstrated CD‐MEEKC and CD‐MEKC methods provided high efficiencies, low LODs, and reproducible enantioseparations of esbiothrin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号