首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 740 毫秒
1.
The consistency of the discretization of the scalar advection equation with the discretization of the continuity equation is studied for conservative advection schemes coupled to three‐dimensional flows with a free‐surface. Consistency between the discretized free‐surface equation and the discretized scalar transport equation is shown to be necessary for preservation of constants. In addition, this property is shown to hold for a general formulation of conservative schemes. A discrete maximum principle is proven for consistent upwind schemes. Various numerical examples in idealized and realistic test cases demonstrate the practical importance of the consistency with the discretization of the continuity equation. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

2.
In this paper,the cell face velocities in the discretization of the continuity equation,the momentum equation,and the scalar equation of a non-staggered grid system are calculated and discussed.Both the momentum interpolation and the linear interpolation are adopted to evaluate the coefficients in the discretized momentum and scalar equations.Their performances are compared.When the linear interpolation is used to calculate the coefficients,the mass residual term in the coefficients must be dropped to maintain the accuracy and convergence rate of the solution.  相似文献   

3.
A time-accurate solution method for the incompressible Navier-Stokes equations in generalized moving coordinates is presented. A finite volume discretization method that satisfies the geometric conservation laws for time-varying computational cells is used. The discrete equations are solved by a fractional step solution procedure. The solution is second-order-accurate in space and first-order-accurate in time. The pressure and the volume fluxes are chosen as the unknowns to facilitate the formulation of a consistent Poisson equation and thus to obtain a robust Poisson solver with favourable convergence properties. The method is validated by comparing the solutions with other numerical and experimental results. Good agreement is obtained in all cases.  相似文献   

4.
The mass conservation equation of the particulate phase, in the form of Euler-type transport equation for particle-number density, is integrated to investigate issues related to its boundary condition consistency. For each of the effects of convection, diffusion and particle settling, the provided boundary conditions need to meet the requirement for well-posed problems physically and mathematically for particulate phase simulation. The integration of the conservative form of the transport equation yields the relations between the rate of change of the total particle number and the boundary conditions. Results of these relations are compared with numerical solutions using a finite-volume solver, of which the numerical formulation is also based on the conservative form of the transport equation. Cases for particulate flow in a room-scale chamber with various combinations of convection, diffusion and settling processes are used as examples for boundary-condition consistency verification.  相似文献   

5.
给出了一种求解双曲型守恒律的三阶半离散中心差分格式。该格式以一种推广的三阶重构为基础,同时考虑了波传播的局部速度。格式的构造方法是利用重构,先计算非一致交错网格上的均值,再将该网格均值投影回原来的非交错网格,得到新的全离散中心差分格式,该格式有半离散形式。本文半离散格式保持了中心差分格式简单的优点,即不需用R iemann解算器,避免了进行特征解耦。它具有守恒形式,数值通量满足相容性条件。数值试验结果表明该格式是高精度、高分辨率的。  相似文献   

6.
A high-order discontinuous Galerkin (DG) method is proposed in this work for solving the two-dimensional steady and unsteady incompressible Navier-Stokes (INS) equations written in conservative form on arbitrary grids. In order to construct the interface inviscid fluxes both in the continuity and in the momentum equations, an artificial compressibility term has been added to the continuity equation for relaxing the incompressibility constraint. Then, as the hyperbolic nature of the INS equations has been recovered, the local Lax-Friedrichs (LLF) flux, which was previously developed in the context of hyperbolic conservation laws, is applied to discretize the inviscid term. Unlike the traditional artificial compressibility method, in this work, the artificial compressibility is introduced only for the construction of the inviscid numerical fluxes; therefore, a consistent discretization of the INS equations is obtained, irrespective of the amount of artificial compressibility used. What is more, as the LLF flux can be obtained directly and straightforward, no numerical iteration for solving an exact Riemann problem is entailed in our method. The viscous term is discretized by the direct DG method, which was developed based on the weak formulation of the scalar diffusion problems on structured grids. The performance and the accuracy of the method are demonstrated by computing a number of benchmark test cases, including both steady and unsteady incompressible flow problems. Due to its simplicity in implementation, our method provides an attractive alternative for solving the INS equations on arbitrary grids.  相似文献   

7.
The numerical simulation of interaction between structures and two‐phase flows is a major concern for many industrial applications. To address this challenge, the motion of structures has to be tracked accurately. In this work, a discrete forcing method based on a porous medium approach is proposed to follow a nondeformable rigid body with an imposed velocity by using a finite‐volume Navier‐Stokes solver code dedicated to multiphase flows and based on a two‐fluid approach. To deal with the action reaction principle at the solid wall interfaces in a conservative way, a porosity is introduced allowing to locate the solid and insuring no diffusion of the fluid‐structure interface. The volumetric fraction equilibrium is adapted to this novelty. Mass and momentum balance equations are formulated on a fixed Cartesian grid. Interface tracking is addressed in detail going from the definition of the porosity to the changes in the discretization of the momentum balance equation. This so‐called time‐ and space‐dependent porosity method is then validated by using analytical and elementary test cases.  相似文献   

8.
This paper presents a numerical simulation procedure for the dynamics of a monodisperse gas-particle mixture in the nonlinear wave field of an acoustic resonator using a two-temperature two-velocity model ignoring phase transitions, particle collision, and possible coagulation. It is assumed that viscosity is present only in the carrier medium described by the Navier-Stokes equations for a compressible gas. The dispersed phase is described by the equation of conservation of mass, momentum, and energy. A monotonic solution is obtained by solving the equations of motion for the carrier medium and dispersed phase in generalized moving coordinates using the explicit McCormack method with splitting in the spatial directions and a conservative correction scheme. The method can be used to study nonlinear oscillations of two-phase mixtures in the vicinity of the first three eigenfrequencies in a flat channel.  相似文献   

9.
Dynamic response of multispan viscoelastic thin beams subjected to a moving mass is studied by an efficient numerical method in some detail. To this end, the unknown parameters of the problem are discretized in spatial domain using generalized moving least square method (GMLSM) and then, discrete equations of motion based on Lagrange's equation are obtained. Maximum deflection and bending moments are considered as the important design parameters. The design parameter spectra in terms of mass weight and velocity of the moving mass are presented for multispan viscoelastic beams as well as various values of relaxation rate and beam span number. A reasonable good agreement is achieved between the results of the proposed solution and those obtained by other researchers. The results indicate that, although the load inertia effects in beams with higher span number would be intensified for higher levels of moving mass velocity, the maximum values of design parameters would increase either. Moreover, the possibility of mass separation is shown to be more critical as the span number of the beam increases. This fact also violates the linear relation between the mass weight of the moving load and the associated design parameters, especially for high moving mass velocities. However, as the relaxation rate of the beam material increases, the load inertia effects as well as the possibility of moving mass separation reduces.  相似文献   

10.
In the numerical solutions of fluid flow problems in moving co-ordinates, an additional conservation equation, namely the space conservation law, has to be solved simultaneously with the mass, momentum and energy conservation equations. In this paper a method of incorporating the space conservation law into a finite volume procedure is proposed and applied to a number of test cases. The results show that the method is efficient and produces accurate results for all grid velocities and time steps for which temporal accuracy suffices. It is also demonstrated, by analysis and test calculations, that not satisfying the space conservation law in a numerical solution procedure introduces errors in the form of artificial mass sources. These errors can be made negligible only by choosing a sufficiently small time step, which sometimes may be smaller than required by the temporal discretization accuracy.  相似文献   

11.
This note revisits the derivation of the ALE form of the incompressible Navier–Stokes equations in order to retain insight into the nature of geometric conservation. It is shown that the flow equations can be written such that time derivatives of integrals over moving domains are avoided prior to discretization. The geometric conservation law is introduced into the equations and the resulting formulation is discretized in time and space without loss of stability and accuracy compared to the fixed grid version. There is no need for temporal averaging remaining. The formulation applies equally to different time integration schemes within a finite element context. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
The purpose of the present work was to evaluate the importance of formal accuracy and of the conservation property in the numerical computation of incompressible flows with arbitrary free boundaries, such as occur in wave-breaking problems. Four spatial discretization methods were implemented in a computer code based on the VOF method for tracking free surfaces: a non-conservative four-point scheme, the conservative quadratic upstream interpolation method, the conservative linear extrapolation method and a lower-order conservative scheme based on the power-law discretization. The performance of the four schemes was evaluated in three test problems: the propagation of a solitary wave of high amplitude, the propagation of an undular hydraulic jump and the flow resulting from a breaking hydraulic jump. The main conclusion obtained in the present work was that discrete momentum conservation is more important than the formal accuracy of the spatial discretization scheme, particularly when there is recirculation and breaking.  相似文献   

13.
A new finite element formulation designed for both compressible and nearly incompressible viscous flows is presented. The formulation combines conservative and non‐conservative dependent variables, namely, the mass–velocity (density * velocity), internal energy and pressure. The central feature of the method is the derivation of a discretized equation for pressure, where pressure contributions arising from the mass, momentum and energy balances are taken implicitly in the time discretization. The method is applied to the analysis of laminar flows governed by the Navier–Stokes equations in both compressible and nearly incompressible regimes. Numerical examples, covering a wide range of Mach number, demonstrate the robustness and versatility of the new method. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

14.
研究带有非完整约束的一类多体系统运动规划问题。多体系统中的非完整约束通常是由不可积的速度约束或不可积的守恒律引起。在系统动量和动量矩守恒情况下,动力学方程降阶为非完整形式约束方程,系统的控制问题可转化为无漂移系统的非完整运动规划问题。文中首先导出具有多体开链系统的非完整运动模型。利用最优控制理论和最优化技术,采用输入参数化的方法将连续的最优控制问题转化为离散的最优控制问题,提出一种非完整多体系统运动规划的拟牛顿算法。最后将该方法用于自由漂浮的空间三连杆机构,仿真结果验证了该方法的有效性。  相似文献   

15.
A depth‐averaged two‐dimensional model has been developed in the curvilinear co‐ordinate system for free‐surface flow problems. The non‐linear convective terms of the momentum equations are discretized based on the explicit–finite–analytic method with second‐order accuracy in space and first‐order accuracy in time. The other terms of the momentum equations, as well as the mass conservation equation, are discretized by the finite difference method. The discretized governing equations are solved in turn, and iteration in each time step is adopted to guarantee the numerical convergence. The new model has been applied to various flow situations, even for the cases with the presence of sub‐critical and supercritical flows simultaneously or sequentially. Comparisons between the numerical results and the experimental data show that the proposed model is robust with satisfactory accuracy. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

16.
A high-order Lagrangian cell-centered conservative gas dynamics scheme is presented on unstructured meshes. A high-order piecewise pressure of the cell is intro- duced. With the high-order piecewise pressure of the cell, the high-order spatial discretiza- tion fluxes are constructed. The time discretization of the spatial fluxes is performed by means of the Taylor expansions of the spatial discretization fluxes. The vertex velocities are evaluated in a consistent manner due to an original solver located at the nodes by means of momentum conservation. Many numerical tests are presented to demonstrate the robustness and the accuracy of the scheme.  相似文献   

17.
The steady Navier–Stokes equations in primitive variables are discretized in conservative form by a vertex-centred finite volume method Flux difference splitting is applied to the convective part to obtain an upwind discretization. The diffusive part is discretized in the central way. In its first-order formulation, flux difference splitting leads to a discretization of so-called vector positive type. This allows the use of classical relaxation methods in collective form. An alternating line Gauss–Seidel relaxation method is chosen here. This relaxation method is used as a smoother in a multigrid method. The components of this multigrid method are: full approximation scheme with F-cycles, bilinear prolongation, full weighting for residual restriction and injection of grid functions. Higher-order accuracy is achieved by the flux extrapolation method. In this approach the first-order convective fluxes are modified by adding second-order corrections involving flux limiting. Here the simple MinMod limiter is chosen. In the multigrid formulation the second-order discrete system is solved by defect correction. Computational results are shown for the well known GAMM backward-facing step problem and for a channel with a half-circular obstruction.  相似文献   

18.
A time-accurate, finite volume method for solving the three-dimensional, incompressible Navier-Stokes equations on a composite grid with arbitrary subgrid overlapping is presented. The governing equations are written in a non-orthogonal curvilinear co-ordinate system and are discretized on a non-staggered grid. A semi-implicit, fractional step method with approximate factorization is employed for time advancement. Multigrid combined with intergrid iteration is used to solve the pressure Poisson equation. Inter-grid communication is facilitated by an iterative boundary velocity scheme which ensures that the governing equations are well-posed on each subdomain. Mass conservation on each subdomain is preserved by using a mass imbalance correction scheme which is secondorder-accurate. Three test cases are used to demonstrate the method's consistency, accuracy and efficiency.  相似文献   

19.
A fully conservative zonal interface algorithm for overlapped (Chimera) grid has been extended to handle moving body flows. To ensure flow conservation, the motion of the computational grid needs to be taken into account. Several new issues arising from moving and deforming grids, e.g., vanishing and new-born cell problems, are addressed with a cell-merging-unmerging technique. The grid velocities are determined in a way which satisfies free-stream preserving (the Geometric Conservation Laws)The flow solver is based on a fully implicit, cell-centered finite volume discretization with MUSCL reconstruction and Roe's approximate Riemann solver. The interface algorithm is first validated by tackling the case of supersonic flow over a cylinder. Then several moving body flow problems are simulated using the current approach to demonstrate its capabilities.  相似文献   

20.
This paper presents numerical results for laminar, incompressible and non-isothermal polymer melt flow in sudden expansions. The mathematical model includes the mass, momentum and energy conservation laws within the framework of a generalized Newtonian formulation. Two constitutive relations are adopted to describe the non-Newtonian behavior of the flow, namely Cross and Modified Arrhenius Power-Law models. The governing equations are discretized using the finite difference method based on central, second-order accurate formulas for both convective and diffusive terms. The pressure–velocity coupling is treated by solving a Poisson equation for pressure. The results are presented for two commercial polymers and demonstrate that important flow parameters, such as pressure drop and viscosity distribution, are strongly affected by heat transfer features.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号