首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An approximate‐state Riemann solver for the solution of hyperbolic systems of conservation laws with source terms is proposed. The formulation is developed under the assumption that the solution is made of rarefaction waves. The solution is determined using the Riemann invariants expressed as functions of the components of the flux vector. This allows the flux vector to be computed directly at the interfaces between the computational cells. The contribution of the source term is taken into account in the governing equations for the Riemann invariants. An application to the water hammer equations and the shallow water equations shows that an appropriate expression of the pressure force at the interface allows the balance with the source terms to be preserved, thus ensuring consistency with the equations to be solved as well as a correct computation of steady‐state flow configurations. Owing to the particular structure of the variable and flux vectors, the expressions of the fluxes are shown to coincide partly with those given by the HLL/HLLC solver. Computational examples show that the approximate‐state solver yields more accurate solutions than the HLL solver in the presence of discontinuous solutions and arbitrary geometries. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
Two‐dimensional shallow water models with porosity appear as an interesting path for the large‐scale modelling of floodplains with urbanized areas. The porosity accounts for the reduction in storage and in the exchange sections due to the presence of buildings and other structures in the floodplain. The introduction of a porosity into the two‐dimensional shallow water equations leads to modified expressions for the fluxes and source terms. An extra source term appears in the momentum equation. This paper presents a discretization of the modified fluxes using a modified HLL Riemann solver on unstructured grids. The source term arising from the gradients in the topography and in the porosity is treated in an upwind fashion so as to enhance the stability of the solution. The Riemann solver is tested against new analytical solutions with variable porosity. A new formulation is proposed for the macroscopic head loss in urban areas. An application example is presented, where the large scale model with porosity is compared to a refined flow model containing obstacles that represent a schematic urban area. The quality of the results illustrates the potential usefulness of porosity‐based shallow water models for large scale floodplain simulations. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
In this paper we study an extension of Osher's Riemann solver to mixtures of perfect gases whose equation of state is of the form encountered in hypersonic applications. As classically, one needs to compute the Riemann invariants of the system to evaluate Osher's numerical flux. For the case of interest here it is impossible in general to derive simple enough expressions which can lead to an efficient calculation of fluxes. The key point here is the definition of approximate Riemann invariants to alleviate this difficulty. Some of the properties of this new numerical flux are discussed. We give 1D and 2D applications to illustrate the robustness and capability of this new solver. We show by numerical examples that the main properties of Osher's solver are preserved; in particular, no entropy fix is needed even for hypersonic applications.  相似文献   

4.
An approximate (linearized) Riemann solver is presented for the solution of the Euler equations of gas dynamics in one spatial co-ordinate. This includes cylindrically and spherically symmetric geometries and also applies to narrow ducts with area variation. The method is Roe's flux difference splitting with a technique for dealing with source terms. The results of two problems, a spherically divergent infinite shock and a converging cylindrical shock, are presented. The numerical results compare favourably with those of Noh's recent survey and also with those of Ben-Artzi and Falcovitz using a more complicated Riemann solver.  相似文献   

5.
The Riemann solver is the fundamental building block in the Godunov‐type formulation of many nonlinear fluid‐flow problems involving discontinuities. While existing solvers are obtained either iteratively or through approximations of the Riemann problem, this paper reports an explicit analytical solution to the exact Riemann problem. The present approach uses the homotopy analysis method to solve the nonlinear algebraic equations resulting from the Riemann problem. A deformation equation defines a continuous variation from an initial approximation to the exact solution through an embedding parameter. A Taylor series expansion of the exact solution about the embedding parameter provides a series solution in recursive form with the initial approximation as the zeroth‐order term. For the nonlinear shallow‐water equations, a sensitivity analysis shows fast convergence of the series solution and the first three terms provide highly accurate results. The proposed Riemann solver is implemented in an existing finite‐volume model with a Godunov‐type scheme. The model correctly describes the formation of shocks and rarefaction fans for both one and two‐dimensional dam‐break problems, thereby verifying the proposed Riemann solver for general implementation. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
This paper presents details of a second‐order accurate, Godunov‐type numerical model of the two‐dimensional shallow water equations (SWEs) written in matrix form and discretized using finite volumes. Roe's flux function is used for the convection terms and a non‐linear limiter is applied to prevent unwanted spurious oscillations. A new mathematical formulation is presented, which inherently balances flux gradient and source terms. It is, therefore, suitable for cases where the bathymetry is non‐uniform, unlike other formulations given in the literature based on Roe's approximate Riemann solver. The model is based on hierarchical quadtree (Q‐tree) grids, which adapt to inherent flow parameters, such as magnitude of the free surface gradient and depth‐averaged vorticity. Validation tests include wind‐induced circulation in a dish‐shaped basin, two‐dimensional frictionless rectangular and circular dam‐breaks, an oblique hydraulic jump, and jet‐forced flow in a circular reservoir. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

7.
This work presents an approximate Riemann solver to the transient isothermal drift ‐ flux model. The set of equations constitutes a non‐linear hyperbolic system of conservation laws in one space dimension. The elements of the Jacobian matrix A are expressed through exact analytical expressions. It is also proposed a simplified form of A considering the square of the gas to liquid sound velocity ratio much lower than one. This approximation aims to express the eigenvalues through simpler algebraic expressions. A numerical method based on the Gudunov's fluxes is proposed employing an upwind and a high order scheme. The Roe linearization is applied to the simplified form of A . The proposed solver is validated against three benchmark solutions and two experimental pipe flow data. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
A very simple linearization of the solution to the Riemann problem for the steady supersonic Euler equations is presented. When used locally in conjunction with the Godunov method, computing savings by a factor of about four relative to the use of exact Riemann solvers can be achieved. For severe flow regimes, however, the linearization loses accuracy and robustness. We then propose the use of a Riemann solver adaptation procedure. This retains the accuracy and robustness of the exact Riemann solver and the computational efficiency of the cheap linearized Riemann solver. Numerical results for two- and three-dimensional test problems are presented.  相似文献   

9.
A novel finite volume method has been presented to solve the shallow water equations. In addition to the volume‐integrated average (VIA) for each mesh cell, the surface‐integrated average (SIA) is also treated as the model variable and is independently predicted. The numerical reconstruction is conducted based on both the VIA and the SIA. Different approaches are used to update VIA and SIA separately. The SIA is updated by a semi‐Lagrangian scheme in terms of the Riemann invariants of the shallow water equations, while the VIA is computed by a flux‐based finite volume formulation and is thus exactly conserved. Numerical oscillation can be effectively avoided through the use of a non‐oscillatory interpolation function. The numerical formulations for both SIA and VIA moments maintain exactly the balance between the fluxes and the source terms. 1D and 2D numerical formulations are validated with numerical experiments. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
We present in this paper a finite difference solver for Maxwell's equations in non‐staggered grids. The scheme formulated in time domain theoretically preserves the properties of zero‐divergence, symplecticity, and dispersion relation. The mathematically inherent Hamiltonian can be also retained all the time. Moreover, both spatial and temporal terms are approximated to yield the equal fourth‐order spatial and temporal accuracies. Through the computational exercises, modified equation analysis and Fourier analysis, it can be clearly demonstrated that the proposed triple‐preserving solver is computationally accurate and efficient for use to predict the Maxwell's solutions. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
We present a Roe‐type weak formulation Riemann solver where the average coefficient matrix is computed numerically. The novelty of this approach is that it is general enough that can be applied to any hyperbolic system while retaining the accuracy of the original Roe solver. We show applications to the compressible Euler equations with general equation of state. An alternative version of the method uses directly the eigenvectors in the averaging process, simplifying the algorithm. These new solvers are applied in conservative and path‐conservative schemes with high‐order accuracy and on unstructured meshes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
This article presents a numerical model that enables to solve on unstructured triangular meshes and with a high order of accuracy, Riemann problems that appear when solving hyperbolic systems. For this purpose, we use a MUSCL‐like procedure in a ‘cell‐vertex’ finite‐volume framework. In the first part of this procedure, we devise a four‐state bi‐dimensional HLL solver (HLL‐2D). This solver is based upon the Riemann problem generated at the barycenter of a triangular cell, from the surrounding cell‐averages. A new three‐wave model makes it possible to solve this problem, approximately. A first‐order version of the bi‐dimensional Riemann solver is then generated for discretizing the full compressible Euler equations. In the second part of the MUSCL procedure, we develop a polynomial reconstruction that uses all the surrounding numerical data of a given point, to give at best third‐order accuracy. The resulting over determined system is solved by using a least‐square methodology. To enforce monotonicity conditions into the polynomial interpolation, we use and adapt the monotonicity‐preserving limiter, initially devised by Barth (AIAA Paper 90‐0013, 1990). Numerical tests and comparisons with competing numerical methods enable to identify the salient features of the whole model. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
A robust, well‐balanced, unstructured, Godunov‐type finite volume model has been developed in order to simulate two‐dimensional dam‐break floods over complex topography with wetting and drying. The model is based on the nonlinear shallow water equations in hyperbolic conservation form. The inviscid fluxes are calculated using the HLLC approximate Riemann solver and a second‐order spatial accuracy is achieved by implementing the MUSCL reconstruction technique. To prevent numerical oscillations near shocks, slope‐limiting techniques are used for controlling the total variation of the reconstructed field. The model utilizes an explicit two‐stage Runge–Kutta method for time stepping, whereas implicit treatments for friction source terms. The novelties of the model include the flux correction terms and the water depth reconstruction method both for partially and fully submerged cells, and the wet/dry front treatments. The proposed flux correction terms combined with the water depth reconstruction method are necessary to balance the bed slope terms and flux gradient in the hydrostatical steady flow condition. Especially, this well‐balanced property is also preserved in partially submerged cells. It is found that the developed wet/dry front treatments and implicit scheme for friction source terms are stable. The model is tested against benchmark problems, laboratory experimental data, and realistic application related to dam‐break flood wave propagation over arbitrary topography. Numerical results show that the model performs satisfactorily with respect to its effectiveness and robustness and thus has bright application prospects. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
Flooding due to the failure of a dam or dyke has potentially disastrous consequences. This paper presents a Godunov‐type finite volume solver of the shallow water equations based on dynamically adaptive quadtree grids. The Harten, Lax and van Leer approximate Riemann solver with the Contact wave restored (HLLC) scheme is used to evaluate interface fluxes in both wet‐ and dry‐bed applications. The numerical model is validated against results from alternative numerical models for idealized circular and rectangular dam breaks. Close agreement is achieved with experimental measurements from the CADAM dam break test and data from a laboratory dyke break undertaken at Delft University of Technology. Copyright © 2004 John Wiley Sons, Ltd.  相似文献   

15.
通过孔隙率方法来描述挡水物对过水能力的影响建立了一维孔隙率浅水方程. 采用有限体积方法和Roe格式的近似Riemann解建立了孔隙率浅水方程的离散模式. 对底坡和孔隙率源项采用特性方向分解的方法进行处理,使模型精确满足C(Conservative)特性,增加了模型的稳定性. 通过算例模拟证明了模型可以对河道中的挡水物作用进行模拟,且计算结果表明模型具有和谐、稳定、分辨率高等优点.   相似文献   

16.
The Euler equations are solved for non‐hydrostatic atmospheric flow problems in two dimensions using a high‐resolution Godunov‐type scheme. The Riemann problem is solved using a flux‐based wave decomposition suggested by LeVeque. This paper describes in detail, the design and implementation of the Riemann solver used for computing the Godunov fluxes. The methodology is then validated against benchmark cases for non‐hydrostatic atmospheric flows. Comparisons are made with solutions obtained from the National Center for Atmospheric Research's state‐of‐the‐art numerical model. The method shows promise in simulating non‐hydrostatic flows, which are characterized by steep gradients on the meso‐, micro‐ and urban‐scales. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
The scope of this paper is three fold. We first formulate upwind and symmetric schemes for hyperbolic equations with non‐conservative terms. Then we propose upwind numerical schemes for conservative and non‐conservative systems, based on a Riemann solver, the initial conditions of which are evolved non‐linearly in time, prior to a simple linearization that leads to closed‐form solutions. The Riemann solver is easily applied to complicated hyperbolic systems. Finally, as an example, we formulate conservative schemes for the three‐dimensional Euler equations for general compressible materials and give numerical results for a variety of test problems for ideal gases in one and two space dimensions. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
Discontinuous Galerkin methods have emerged in recent years as an alternative for nonlinear conservation equations. In particular, their inherent structure (a numerical flux based on a suitable approximate Riemann solver introduces some stabilization) suggests that they are specially adapted to capture shocks. However, numerical fluxes are not sufficient to stabilize the solution in the presence of shocks. Thus, slope limiter methods, which are extensions of finite volume methods, have been proposed. These techniques require, in practice, mesh adaption to localize the shock structure. This is is more obvious for large elements typical of high‐order approximations. Here, a new approach based on the introduction of artificial diffusion into the original equations is presented. The order is not systematically decreased to one in the presence of the shock, large high‐order elements can be used, and several linear and nonlinear tests demonstrate the efficiency of the proposed methodology. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
A semi‐implicit finite volume model based upon staggered grid is presented for solving shallow water equation. The model employs a time‐splitting scheme that uses a predictor–corrector method for the advection term. The fluxes are calculated based on a Riemann solver in the prediction step and a downwind scheme in the correction step. A simple TVD scheme is employed for shock capturing purposes in which the Minmond limiter is used for flux functions. As a consequence of using staggered grid, an ADI method is adopted for solving the discretized equations for 2‐D problems. Several 1‐D and 2‐D flows have been modeled with satisfactory results when compared with analytical and experimental test cases. The model is also capable of simulating supercritical as well as subcritical flow. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
In this paper, a fully discrete high‐resolution arbitrary Lagrangian–Eulerian (ALE) method is developed over untwisted time–space control volumes. In the framework of the finite volume method, 2D Euler equations are discretized over untwisted moving control volumes, and the resulting numerical flux is computed using the generalized Riemann problem solver. Then, the fluid flows between meshes at two successive time steps can be updated without a remapping process in the classic ALE method. This remapping‐free ALE method directly couples the mesh motion into a physical variable update to reflect the temporal evolution in the whole process. An untwisted moving mesh is generated in terms of the vorticity‐free part of the fluid velocity according to the Helmholtz theorem. Some typical numerical tests show the competitive performance of the current method. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号