首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lu Zhou  Ruo Yuan  Yaqin Chai 《Electroanalysis》2007,19(11):1131-1138
A poly(vinylchloride) (PVC) membrane based potentiometric immunosensor for the direct detection of alpha‐fetoprotein (AFP) has been developed. First, Au colloid particle was chemisorbed upon amino groups of o‐phenylenediamine, which were dissolved in plasticized PVC membrane. Then alpha‐fetoprotein antibody (anti‐AFP) was immobilized upon the surface of the Au colloid particle to prepare a potentiometric AFP immunosensor. The Au colloid particle modified PVC membrane was characterized by digital photo and transmission electron microscope (TEM). The immunosensor exhibited fast potentiometric response (≤4 min) and showed specific response to AFP in the range of 4.9 to 158.5 ng/mL with a correlation coefficient of 0.9971 and a detection limit of 1.6 ng/mL. The factors influencing the performance of the immunosensor were also studied in detail. Moreover, the proposed method is economical and efficient as well as potentially attractive for clinical immunoassays.  相似文献   

2.
A simple and portable electrochemical immunosensor for the detection of total prostate specific antigen (t‐PSA) in human serum was developed using a double‐layer nanogold particles and dendrimer‐functionalized polyvinyl chloride (PVC) membrane as immunosensing interface. To fabricate such a multifunctional PVC electrode, an o‐phenylenediaminedoped PVC membrane was initially constructed, then nanogold particles and poly(amidoamine) G4‐dendrimer with a sandwich‐type format were assembled onto the PVC membrane surface, and then t‐PSA antibodies (anti‐PSA) were adsorbed on the nanogold surface. The detection principle of the immunosensor is based on the change in the electric potential before and after the antigen‐antibody interaction. The experimental conditions and the factors influencing the performance of the immunosensor were investigated. Under optimal conditions, the proposed immunosensor exhibits good electrochemical behavior in the dynamic range of 0.5–18 ng/mL relative to t‐PSA concentration with a relative low detection limit of 0.1 ng/mL (S/N=3). The precision, reproducibility, and stability of the immunosensor are acceptable. In addition, 43 serum specimens were assayed by the as‐prepared immunosensor, and consistent results were obtained in comparison with those obtained by the standard enzyme‐linked immunosorbent assay (ELISA). Compared with the conventional ELISAs, the developed immunoassay system was simple and rapid without labeling and separation steps. Importantly, the immobilization and detection methodologies could be extended for the immobilization and detection of other biomarkers.  相似文献   

3.
This work reports a new electrochemical monitoring platform for sensitive detection of Cu2+ coupling click chemistry with nanogold‐functionalized PAMAM dendrimer (AuNP‐PAMAM). The system involved an alkyne‐modified carbon electrode and an azide‐functionalized AuNP‐PAMAM. Initially, the added Cu2+ was reduced to Cu+ by the ascorbate, and then the azide‐modified AuNP‐PAMAM was covalently conjugated to the electrode via Cu+‐catalyzed azide‐alkyne click reaction. The carried AuNPs accompanying PAMAM dendrimer could be directly monitored by stripping voltammetry after acidic pretreatment. By introduction of high‐loading PAMAM dendrimer with gold nanoparticles, as low as 2.8 pM Cu2+ (ppt) could be detected, which was 125‐fold lower than that of gold nanoparticle‐based labeling strategy. The method exhibited high specificity toward target Cu2+ against other potentially interfering ions, and was applicable for monitoring Cu2+ in drinking water with satisfactory results.  相似文献   

4.
A novel reagentless amperometric immunosensor for the determination of alpha‐fetoprotein (AFP) was prepared by immobilizing TiO2 colloids on Prussian blue (PB) modified platinum electrode, which yielded a positively charged interface with strong adsorption to deposit gold nanoparticles for immobilization of alpha‐fetoprotein antibody (anti‐AFP). The factors influencing the performance of the proposed immunosensors were studied in detail. Under the optimized conditions, cyclic voltammograms determination of AFP showed a specific response in two concentration ranges from 3.0 to 30.0 ng/mL and from 30.0 to 300.0 ng/mL with a detection limit of 1.0 ng/mL at a signal‐to‐noise ratio of 3. The proposed immunosensor exhibited high selectivity, good reproducibility, long‐term stability (>2 months) and good repeatability.  相似文献   

5.
《Electroanalysis》2006,18(22):2194-2201
A new amperometric immunobiosensor for carcinoembryonic antigen (CEA) determination in human serum was developed via encapsulation of horseradish peroxidase‐labeled carcinoembryonic antibody (HRP‐anti‐CEA) in a gold nanoparticles/DNA composite architecture. The presences of gold nanoparticles provided a congenial microenvironment for the immobilized biomolecules and decreased the electron transfer impedance, leading to a direct electrochemical behavior of the immobilized HRP. The formation of the antibody–antigen complex by a simple one‐step immunoreaction between the immobilized HRP‐anti‐CEA and CEA in sample solution introduced a barrier of direct electrical communication between the immobilized HRP and the gold electrode surface. Under optimal conditions, the current change obtained from the labeled HRP relative to H2O2 system was proportional to the CEA concentration in two linear ranges from 0.5 to 15 ng/mL and 15 to 300 ng/mL with a detection limit of 0.1 ng/mL (at 3δ). The precision and reproducibility are acceptable with the intraassay CV of 6.3% and 4.7% at 8 and 60 ng/mL CEA, respectively. The storage stability of the proposed immunosensor is acceptable in a pH 7.0 PBS at 4 °C for 9 days. Moreover, the proposed immunosensors were used to analyze CEA in human serum specimens. Analytical results of clinical samples show the developed immunoassay has a promising alternative approach for detecting CEA in the clinical diagnosis.  相似文献   

6.
A sensitive and specific electrochemical immunosensor was developed with α‐fetoprotein (AFP) as the model analyte by using gold nanoparticle label for enzymatic catalytic amplification. A self‐assembled monolayer membrane of mercaptopropionic acid (MPA) was firstly formed on the electrode surface through gold‐sulfur interaction. Monoclonal mouse anti‐human AFP was covalently immobilized to serve as the capture antibody. In the presence of the target human AFP, gold nanoparticles coated with polyclonal rabbit anti‐human AFP were bound to the electrode via the formation of a sandwiched complex. With the introduction of goat anti‐rabbit IgG conjugated with alkaline phosphatase, the dentritical enzyme complex was formed through selective interaction of the secondary antibodies with the colloidal gold‐based primary antibody at the electrode, thus affording the possibility of signal amplification for AFP detection. Current response arising from the oxidation of enzymatic product was significantly amplified by the dentritical enzyme complex. The current signal was proportional to the concentration of AFP from 1.0 ng mL?1 to 500 ng mL?1 with a detection limit of 0.8 ng mL?1. This system could be extended to detect other target molecules with the corresponding antibody pairs.  相似文献   

7.
A new electrochemical immunosensor for the detection of α‐1‐fetoprotien (AFP) was developed based on AFP antibody (anti‐AFP)‐functionalized organic/inorganic hybrid nanocomposite membrane. To fabricate such a hybrid composite membrane, 3,4,9,10‐perylenetetracarboxylic acid‐bound thionine molecules (PTCTH) were initially doped into titania colloids (TiO2), and then gold nanoparticles and anti‐AFP were immobilized onto the composite film in turn. Comparison with the electrode fabricated only with thionine not 3,4,9,10‐perylenetetracarboxylic acid, the immunosensor with PTCTH exhibited high sensitivity and fast electron transfer. The presence of gold nanoparticles provided a good microenvironment for the immobilization of biomolecules, enhanced the surface coverage of protein, and improved the sensitivity of the immunosensor. The modified process was characterized by scanning electron microscope (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The surface topography of the membrane was investigated by scanning electron microscopy (SEM). Under optimal conditions, the proposed immunosensor exhibited a wide linear range from 2.5 to 200.0 ng/mL towards AFP with a detection limit of 0.5 ng/mL (S/N=3). The stability, reproducibility and precision of the immunosensor were acceptable. Comparison with the conventional enzyme‐linked immunosorbent assay (ELISA), the present method did not require more labeled procedures and washing steps. Significantly, the detection methodology provides a promising approach for other proteins or biosecurities.  相似文献   

8.
Min Song  Juan Xu 《Electroanalysis》2013,25(2):523-530
In this study, branched polyethyleneimine (PEI) was covalently linked to carboxylic acid functionalized graphene (GO‐COOH) to form GO‐COOH/PEI composites. Transmission electron microscopy, Fourier transform infrared spectroscopy, Raman spectra and thermogravimetric analysis were used to characterize the obtained composites. Electrochemical measurements indicated that the modification of the composites on the electrode could efficiently enhance the voltammetric response, suggesting the potential application for making electrochemical sensors. Moreover, our results also indicated that the electrocatalytic oxidation of ammonia could be observed on the GO‐COOH/PEI composites modified glassy carbon electrode. Consequently, our observations demonstrated that GO‐COOH/PEI composites were excellent materials for electrochemical sensing.  相似文献   

9.
Gold'n'beads : A chemiluminescence immunoassay for the sensitive and rapid determination of AFP has been developed, employing bromophenol blue as a novel chemiluminescence enhancer by taking advantages of easy separation by magnetic beads and signal amplification by gold nanoparticles based on a sandwich‐type immunoreaction (see scheme).

  相似文献   


10.
The electrochemical immunosensor for α‐fetoprotein (AFP) was fabricated based on the platform of gold nanoparticles (GNP)/graphene (Gr)‐prussian blue (PB). By electrodeposition, GNP were modified on the surface of the prepared Gr‐PB. The anti‐AFP‐1,1′‐ferrocenedicarboxylic acid (FcDA) as label was directly immobilized on the platform of GNP/Gr‐PB. And after the immunoreactions, the formed complex inhibited the electron transfer and decreased the catalytic current of FcDA toward the reduction of H2O2. And in the range of 10–3200 pg·mL?1, the decreased current is linear with the concentration of AFP, with a detection limit of 3 pg·mL?1. The developed immunoassay method showed good precision, high sensitivity, acceptable stability and reproducibility, and could be used for the detection of real samples with consistent results in comparison with those obtained by the enzyme linked immunosorbent assay (ELISA) method.  相似文献   

11.
β‐Cyclodextrin functionalized graphene/Ag nanocomposite (β‐CD/GN/Ag) was prepared via a one‐step microwave treatment of a mixture of graphene oxide and AgNO3. β‐CD/GN/Ag was employed as an enhanced element for the sensitive determination of 4‐nitrophenol. A wide linear response to 4‐nitrophenol in the concentration ranges of 1.0×10?8–1.0×10?7 mol/L, and 1.0×10?7–1.5×10?3 mol/L was achieved, with a low detection limit of 8.9×10?10 mol/L (S/N=3). The mechanism and the heterogeneous electron transfer kinetics of the 4‐nitrophenol reduction were discussed according to the rotating disk electrode experiments. Furthermore, the sensing platform has been applied to the determination of 4‐nitrophenol in real samples.  相似文献   

12.
《Electroanalysis》2018,30(8):1774-1780
This study presents a new approach for an electrochemical immunoassay using gold nanoparticle (AuNP)‐labeled antibodies and pre‐oxidation and reduction processes, followed by open circuit potential (OCP) measurement. Detection of the pregnancy marker, human chorionic gonadotropin hormone (hCG), was used as a model. After preparation of a sandwich‐type immunosystem, the pre‐oxidation and reduction processes were applied, followed by OCP detection. The applied potential and time period were studied for the optimization of pre‐oxidation and reduction processes. We observed that the pre‐oxidation potential of 1.2 V for 60 s and reduction potential of −0.2 V for 30 s provided the highest OCP signal. The detection limit was 79 pg/mL using the optimal conditions. This system could be applied to a simplified and miniaturized diagnostic system for integration in compact analytical devices.  相似文献   

13.
Various sensor‐based immunoassay methods have been extensively developed for the detection of cancer antigen 15‐3 (CA 15‐3), but most often exhibit low detection signals and low detection sensitivity, and are unsuitable for routine use. The aim of this work is to develop a simple and sensitive electrochemical immunoassay for CA 15‐3 in human serum by using nanogold and DNA‐modified immunosensors. Prussian blue (PB), as a good mediator, was initially electrodeposited on a gold electrode surface, then double‐layer nanogold particles and double‐strand DNA (dsDNA) with the sandwich‐type architecture were constructed on the PB‐modified surface in turn, and then anti‐CA 15‐3 antibodies were adsorbed onto the surface of nanogold particles. The double‐layer nanogold particles provided a good microenvironment for the immobilization of biomolecules. The presence of dsDNA enhanced the surface coverage of protein, and improved the sensitivity of the immunosensor. The performance and factors influencing the performance of the immunosensor were evaluated. Under optimal conditions, the proposed immunosensor exhibited a wide linear range from 1.0 to 240 ng/mL with a relatively low detection limit of 0.6 ng/mL (S/N=3) towards CA 15‐3. The stability, reproducibility and precision of the as‐prepared immunosensor were acceptable. 57 serum specimens were assayed by the developed immunosensor and standard enzyme‐linked immunosorbent assay (ELISA), respectively, and the results obtained were almost consistent. More importantly, the proposed methodology could be further developed for the immobilization of other proteins and biocompounds.  相似文献   

14.
In this paper a molecular wire modified carbon paste electrode (MW‐CPE) was firstly prepared by mixing graphite powder with diphenylacetylene (DPA). Then a graphene (GR) and chitosan (CTS) composite film was further modified on the surface of MW‐CPE to receive the graphene functionalized electrode (CTS‐GR/MW‐CPE), which was used for the sensitive electrochemical detection of adenosine‐5′‐triphosphate (ATP). The CTS‐GR/MW‐CPE exhibited excellent electrochemical performance and the electrochemical behavior of ATP on the CTS‐GR/MW‐CPE was carefully studied by cyclic voltammetry with an irreversible oxidation peak appearing at 1.369 V (vs. SCE). The electrochemical parameters such as charge transfer coefficient (α) and electrode reaction standard rate constant (ks) were calculated with the results of 0.53 and 5.28×10?6 s?1, respectively. By using differential pulse voltammetry (DPV) as detection technique, the oxidation peak current showed good linear relationship with ATP concentration in the range from 1.0 nM to 700.0 µM with a detection limit of 0.342 nM (3σ). The common coexisting substances, such as uric acid, ascorbic acid and guanosine‐5′‐triphosphate (GTP), showed no interferences and the modified electrode was successfully applied to injection sample detection.  相似文献   

15.
《Analytical letters》2012,45(13):2266-2280
A novel electrochemical immunosensor was developed for the determination of prostate-specific antigen based on immobilization of appropriate antibodies on gold nanoparticles and a poly-(2,6-pyridinediamine) modified electrode. The nanocomposite of ferrocene monocarboxylic acid hybridized graphene oxide was prepared by a π-π stacking interaction and was used as the electrochemical probe. A sandwich-type complex immunoassay was applied with polyclonal prostate-specific antigen antibodies labeled with the nanocomposite of ferrocene monocarboxylic acid hybridized graphene oxide. In order to improve the sensitivity, a potentiostatic method was used to reduce graphene oxide. Cyclic voltammetry and differential pulse voltammetry were employed to characterize the assembly process and the performance of the immunosensor. Under optimal conditions, the peak current of the immunosensor increased with concentration, showing a linear relationship between the peak current and the logarithm of the prostate-specific antigen concentrations in a wide range of 2.0 pg mL?1 to 10.0 ng mL?1 with a low detection limit of 0.5 pg mL?1. The immunosensor was used for the determination of prostate-specific antigen in serum.  相似文献   

16.
In the present work, a newly functional nanoparticle has been prepared to immobilize the protein for the detection of α‐1‐fetoprotein (AFP). Prussian blue (PB) nanoparticle was initially synthesized under ultrasonic condition, then bovine serum albumin (BSA) was used to coat the PB nanoparticle to improve the stability of the PB nanoparticle as well as functionalize the surface of PB nanoparticle, and then gold colloids were loaded on the BSA‐coated PB nanoparticle to construct a core‐shell‐shell nanostructure via the conjunction of thiolate linkages or alkylamines of the BSA. Finally, a convenient, effective and sensitivity amperometric immunosensor for the detection of α‐1‐fetoprotein (AFP) was constructed by the employment of these functional core‐shell‐shell microspheres. The preparation of the nanoparticle (Au‐BSA‐PB NPs) was characterized by transmission electron microscopy (TEM), and the assembly of the biosensor was characterized with cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The dynamic range of the resulted immunosensor for the detection of AFP is from 0.02 ng/mL to 200.0 ng/mL with a detection limit of 0.006 ng/mL (S/N=3). Moreover, this biosensor displays good selectivity, stability and reproducibility.  相似文献   

17.
We fabricated a highly sensitive electrochemical sensor for the determination of bisphenol A (BPA) in aqueous solution by using reduced graphene oxide (RGO), carbon nanotubes (CNT), and gold nanoparticles (AuNPs)‐modified screen‐printed electrode (SPE). GO/CNT nanocomposite was directly reduced to RGO/CNT on SPE at room temperature. AuNPs were then electrochemically deposited in situ on RGO/CNT‐modified SPE. Under optimized conditions, differential pulse voltammetry (DPV) produced linear current responses for BPA concentrations of 1.45 to 20 and 20 to 1,490 nM, with a calculated detection limit of an ultralow 800 pM. The sensor response was unaffected by the presence of interferents such as phenol, p‐nitrophenol, pyrocatechol, 2,4‐dinitrophenol, and hydroquinone.  相似文献   

18.
Cytomegalovirus is typically associated with immunocompromised hosts, pregnant women and transplant patients, who require a timely diagnosis. In this work, a sensitive and highly specific electrochemical amplification immunosensor was established for detecting Cytomegalovirus pp65 antigen based on Pt‐PdNPs@SWCNHs with horseradish peroxidase (HRP) as a signal enhancer and thionine as a signal probe. First, Pt nanoparticle (PtNP) and Pd nanoparticle (PdNP) functionalized single‐walled carbon nanohorn (SWCNH) nanocomposites, i.e. Pt‐PdNPs@SWCNHs, was used as a carrier for immobilization of antibody through the Pt‐N bond and the Pd‐N bond. Next, HRP was used to block the rest of the binding‐sites. Signal amplification was obtained by the cooperative catalytic activities of Pt‐PdNPs and HRP to H2O2. SWCNHs loaded with a large amount of Pt‐PdNPs further amplified the signal due to the excellent surface area. The fabricated immunosensor was used to detect different concentrations of Cytomegalovirus pp65 antigen under optimized conditions. The tests showed a linear range from 0.1 to 80 ng mL?1 with a low detection limit of 30 pg mL?1, and exhibited excellent selectivity, stability and reproducibility. Therefore, this project presented a potential approach for the early diagnosis of Cytomegalovirus infection in clinical trials.  相似文献   

19.
In this work, an electrochemical sensor based on a cyclodextrin‐graphene hybrid nanosheets modified glassy carbon electrode (CD‐GNs/GCE) was proposed for the ultrasensitive determination of doxorubicin and methotrexate. The peak currents of doxorubicin and methotrexate on the CD‐GNs/GCE increased 26.5 and 23.7 fold, respectively, compared to the results obtained on the bare GCE. Under optimized conditions, the linear response ranges for doxorubicin and methotrexate are 10 nM–0.2 µM and 0.1 µM–1.0 µM, with detection limits of 0.1 nM and 20 nM, respectively. The sensor showed the advantages of simple preparation, low cost, high sensitivity, good stability and reproducibility. These properties make the prepared sensor a promising tool for the determination of trace amounts of doxorubicin and methotrexate in biological, clinical and pharmaceutical fields.  相似文献   

20.
We describe a simple method for preparing Au‐TiO2/graphene (GR) nanocomposite by deposition of Au nanoparticles (NPs) on TiO2/GR substrates. The as‐prepared Au‐TiO2/GR was characterized by X‐ray diffraction (XRD) and transmission electron microscopy (TEM). The presence of Au NPs on TiO2/GR surface remarkably improves the electrocatalytic activity towards the oxidation of hydrogen peroxide (H2O2) and β‐nicotinamide adenine dinucleotide (NADH). The Au‐TiO2/GR modified glassy carbon (GC) electrode exhibits good amperometric response to H2O2 and NADH, with linear range from 10 to 200 µM and 10 to 240 µM, and detection limit of 0.7 and 0.2 µM, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号