首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A limiter free high order spectral volume (SV) formulation is proposed in this paper to solve the Burgers' equation. This approach uses the Hopf–Cole transformation, which maps the Burgers' equation to a linear diffusion equation. This diffusion equation is solved in an SV setting. The local discontinuous Galerkin (LDG) and the LDG2 viscous flux discretization methods were employed. An inverse transformation was used to obtain the numerical solution to the Burgers' equation. This procedure has two advantages: (i) the shock can be captured, without the use of a limiter; and (ii) the effects of SV partitioning becomes almost redundant as the transformed equation is not hyperbolic. Numerical studies were performed to verify. These studies also demonstrated (i) high order accuracy of the scheme even for very low viscosity; (ii) superiority of the LDG2 scheme, when compared with the LDG scheme. In general, the numerical results are very promising and indicate that this procedure can be applied for obtaining high order numerical solutions to other nonlinear partial differential equations (for instance, the Korteweg–de Vries equations) which generate discontinuous solutions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
We give a class of alternating segment Crank–Nicolson (ASC‐N) method for solving the Burgers' Equation. However, the ASC‐N method was discussed only for solving the diffusion equation by Zhang B. The basic idea of the method is that the grid points on same time level is divided into a number of the groups, the difference equations of each group can be solved independently. The method is unconditionally stable by analysis of linearization procedure. The numerical examples show that the accuracy of the method is better than that of the method discussed by the other authors. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
This paper presents a numerical method for solving the two‐dimensional unsteady incompressible Navier–Stokes equations in a vorticity–velocity formulation. The method is applicable for simulating the nonlinear wave interaction in a two‐dimensional boundary layer flow. It is based on combined compact difference schemes of up to 12th order for discretization of the spatial derivatives on equidistant grids and a fourth‐order five‐ to six‐alternating‐stage Runge–Kutta method for temporal integration. The spatial and temporal schemes are optimized together for the first derivative in a downstream direction to achieve a better spectral resolution. In this method, the dispersion and dissipation errors have been minimized to simulate physical waves accurately. At the same time, the schemes can efficiently suppress numerical grid‐mesh oscillations. The results of test calculations on coarse grids are in good agreement with the linear stability theory and comparable with other works. The accuracy and the efficiency of the current code indicate its potential to be extended to three‐dimensional cases in which full boundary layer transition happens. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
Compact finite difference methods feature high‐order accuracy with smaller stencils and easier application of boundary conditions, and have been employed as an alternative to spectral methods in direct numerical simulation and large eddy simulation of turbulence. The underpinning idea of the method is to cancel lower‐order errors by treating spatial Taylor expansions implicitly. Recently, some attention has been paid to conservative compact finite volume methods on staggered grid, but there is a concern about the order of accuracy after replacing cell surface integrals by average values calculated at centres of cell surfaces. Here we introduce a high‐order compact finite difference method on staggered grid, without taking integration by parts. The method is implemented and assessed for an incompressible shear‐driven cavity flow at Re = 103, a temporally periodic flow at Re = 104, and a spatially periodic flow at Re = 104. The results demonstrate the success of the method. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
The Laplace transform method (LTM) is introduced to solve Burgers' equation. Because of the nonlinear term in Burgers' equation, one cannot directly apply the LTM. Increment linearization technique is introduced to deal with the situation. This is a key idea in this paper. The increment linearization technique is the following: In time level t, we divide the solution u(x, t) into two parts: u(x, tk) and w(x, t), tkttk+1, and obtain a time‐dependent linear partial differential equation (PDE) for w(x, t). For this PDE, the LTM is applied to eliminate time dependency. The subsequent boundary value problem is solved by rational collocation method on transformed Chebyshev points. To face the well‐known computational challenge represented by the numerical inversion of the Laplace transform, Talbot's method is applied, consisting of numerically integrating the Bromwich integral on a special contour by means of trapezoidal or midpoint rules. Numerical experiments illustrate that the present method is effective and competitive. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
This work deals with the numerical solutions of two-dimensional viscous coupled Burgers' equations with appropriate initial and boundary conditions using a three-level explicit time-split MacCormack approach. In this technique, the differential operators split the two-dimensional problem into two pieces so that the two-step explicit MacCormack scheme can be easily applied to each subproblem. This reduces the computational cost of the algorithm. For low Reynolds numbers, the proposed method is second-order accurate in time and fourth-order convergent in space, whereas it is second-order convergent in both time and space for high Reynolds numbers problems. This observation shows the utility and efficiency of the considered method compared with a broad range of numerical schemes widely studied in the literature for solving the two-dimensional time-dependent nonlinear coupled Burgers' equations. A large set of numerical examples that confirm the theoretical results are presented and critically discussed.  相似文献   

7.
A new numerical method called linearized and rational approximation method is presented to solve non‐linear evolution equations. The utility of the method is demonstrated for the case of differentiation of functions involving steep gradients. The solution of Burgers' equation is presented to illustrate the effectiveness of the technique for the solution of non‐linear evolution equations exhibiting nearly discontinuous solutions. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

8.
IntroductionThispaperdealswiththeinitial_boundaryvalueproblemofthree_dimensionalheatconductionequationintheregionD :0≤x,y ,z≤L ,0 ≤t≤T u t= 2 u x2 2 u y2 2 u z2 ,u|x=0 =f1(y,z,t) , u|x=L =f2 (y ,z,t) ,u|y=0 =g1(z,x,t) , u|y=L =g2 (z,x,t) ,u|z=0 =h1(x ,y ,t) , u|z=L =h2 (x ,y ,t) ,u|t=0 =φ(x ,y,z) .(1 )(2 )…  相似文献   

9.
We present a compact finite differences method for the calculation of two‐dimensional viscous flows in biological fluid dynamics applications. This is achieved by using body‐forces that allow for the imposition of boundary conditions in an immersed moving boundary that does not coincide with the computational grid. The unsteady, incompressible Navier–Stokes equations are solved in a Cartesian staggered grid with fourth‐order Runge–Kutta temporal discretization and fourth‐order compact schemes for spatial discretization, used to achieve highly accurate calculations. Special attention is given to the interpolation schemes on the boundary of the immersed body. The accuracy of the immersed boundary solver is verified through grid convergence studies. Validation of the method is done by comparison with reference experimental results. In order to demonstrate the application of the method, 2D small insect hovering flight is calculated and compared with available experimental and computational results. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
利用Sinc-Galerkin法数值求解Burgers方程的初边值问题。首先,用Hopf-Cole变换将二阶非线性的Burgers方程变换为二阶线性方程,同时把第一类边界条件变为第二类边界条件。时间上的导数采用θ加权格式离散,空间导数采用Sinc-Galerkin法离散,端点处分别引入权函数处理变换后的第二类边界条件。最后,通过数值算例验证了Sinc-Galerkin法的指数收敛性,与精确解相比,本文构造的数值格式精度高,能够有效捕捉激波等物理现象。  相似文献   

11.
A high‐order compact finite‐difference lattice Boltzmann method (CFDLBM) is proposed and applied to accurately compute steady and unsteady incompressible flows. Herein, the spatial derivatives in the lattice Boltzmann equation are discretized by using the fourth‐order compact FD scheme, and the temporal term is discretized with the fourth‐order Runge–Kutta scheme to provide an accurate and efficient incompressible flow solver. A high‐order spectral‐type low‐pass compact filter is used to stabilize the numerical solution. An iterative initialization procedure is presented and applied to generate consistent initial conditions for the simulation of unsteady flows. A sensitivity study is also conducted to evaluate the effects of grid size, filtering, and procedure of boundary conditions implementation on accuracy and convergence rate of the solution. The accuracy and efficiency of the proposed solution procedure based on the CFDLBM method are also examined by comparison with the classical LBM for different flow conditions. Two test cases considered herein for validating the results of the incompressible steady flows are a two‐dimensional (2‐D) backward‐facing step and a 2‐D cavity at different Reynolds numbers. Results of these steady solutions computed by the CFDLBM are thoroughly compared with those of a compact FD Navier–Stokes flow solver. Three other test cases, namely, a 2‐D Couette flow, the Taylor's vortex problem, and the doubly periodic shear layers, are simulated to investigate the accuracy of the proposed scheme in solving unsteady incompressible flows. Results obtained for these test cases are in good agreement with the analytical solutions and also with the available numerical and experimental results. The study shows that the present solution methodology is robust, efficient, and accurate for solving steady and unsteady incompressible flow problems even at high Reynolds numbers. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
Turbulence and aeroacoustic noise high‐order accurate schemes are required, and preferred, for solving complex flow fields with multi‐scale structures. In this paper a super compact finite difference method (SCFDM) is presented, the accuracy is analysed and the method is compared with a sixth‐order traditional and compact finite difference approximation. The comparison shows that the sixth‐order accurate super compact method has higher resolving efficiency. The sixth‐order super compact method, with a three‐stage Runge–Kutta method for approximation of the compressible Navier–Stokes equations, is used to solve the complex flow structures induced by vortex–shock interactions. The basic nature of the near‐field sound generated by interaction is studied. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

13.
In order to use the optimal control techniques in models of geophysical flow circulation, an application to a 1D advection–diffusion equation, the so-called Burgers' equation, is described. The aim of optimal control is to find the best parameters of the model which ensure the closest simulation to the observed values. In a more general case, the continuous problem and the corresponding discrete form are formulated. Three kinds of simulation are realized to validate the method. Optimal control processes by initial and boundary conditions require an implicit discretization scheme on the first time step and a decentered one for the non-linear advection term on boundaries. The robustness of the method is tested with a noised dataset and random values of the initial controls. The optimization process of the viscosity coefficient as a time- and space-dependent variable is more difficult. A numerical study of the model sensitivity is carried out. Finally, the numerical application of the simultaneous control by the initial conditions, the boundary conditions and the viscosity coefficient allows a possible influence between controls to be taken into account. These numerical experiments give methodological rules for applications to more complex situations. © 1998 John Wiley & Sons, Ltd.  相似文献   

14.
IntroductionThepurposeofthispaperistodevelopacuratediferencemethodforthefolowinginitialvalueproblem,whichisinsingularperturba...  相似文献   

15.
浅水方程组合型超紧致差分格式   总被引:1,自引:0,他引:1  
提出一族组合型超紧致差分格式(CSCD),对CSCD的数值特性作了分析,并同其他中心型差分格式进行比较。从定性角度,得出同阶中心差分格式中,CSCD格式的截断误差系数最小的结论。从定量角度,利用Fou-rier分析方法分析了CSCD格式的分辨率,并同其他中心型差分格式比较,得出CSCD格式有较高的分辨率的结论。把10阶CSCD格式应用于KdV-Burgers方程和浅水方程的数值模拟,给出两个应用算例。数值实验表明CSCD格式不仅有理论上的高精度,而且有良好的稳定性和收敛性。  相似文献   

16.
Four-point explicit difference schemes for the dispersive equation   总被引:2,自引:0,他引:2  
A class of three-level explicit difference schemes for the dispersive equationu_1=au_(xxx)are established These schemes have higher stability and involve four meshpoints at the middle level.Their local truncation errors are O(τ+h)and stabilityconditions are from|R|≤0.25 to|R|≤10,where|R|=|a|τ/h~3,which is muchbetter than|R|≤0.25.  相似文献   

17.
针对污染扩散方程提出了时间任意阶精度的显式格式,并对该格式的稳定性和精度进行了分析,理论结果表明:一阶精度的计算格式是传统的显格式,其稳定条件为:s≤1/2(s=D.Δt/Δx2,D为扩散系数,Δt为时间步长,Δx为空间步长),随着保留精度阶数的增加,稳定性范围也会随之增大;当保留无穷阶精度时,格式是无条件稳定的。这也就从一个侧面揭示了稳定性与时间精度之间的关系,为高性能数值计算格式的构思提供了可以借鉴的原则。数值算例的结果表明,本文格式具有一定的实用性。  相似文献   

18.
The artificial viscosity method for three—dimensional unsteady gas flow is developed. The stability of finite difference scheme in this case is investigated. The necessary and sufficient conditions for the stability are obtained; these conditions formally agree with the two-dimensional result in Rusanov's paper.  相似文献   

19.
A new finite difference method for the discretization of the incompressible Navier–Stokes equations is presented. The scheme is constructed on a staggered‐mesh grid system. The convection terms are discretized with a fifth‐order‐accurate upwind compact difference approximation, the viscous terms are discretized with a sixth‐order symmetrical compact difference approximation, the continuity equation and the pressure gradient in the momentum equations are discretized with a fourth‐order difference approximation on a cell‐centered mesh. Time advancement uses a three‐stage Runge–Kutta method. The Poisson equation for computing the pressure is solved with preconditioning. Accuracy analysis shows that the new method has high resolving efficiency. Validation of the method by computation of Taylor's vortex array is presented. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

20.
The proper orthogonal decomposition (POD) is a model reduction technique for the simulation of physical processes governed by partial differential equations (e.g.,fluid flows). It has been successfully used in the reduced-order modeling of complex systems. In this paper, the applications of the POD method are extended, i.e., the POD method is applied to a classical finite difference (FD) scheme for the non-stationary Stokes equation with a real practical applied background. A reduced FD scheme is established with lower dimensions and sufficiently high accuracy, and the error estimates are provided between the reduced and the classical FD solutions. Some numerical examples illustrate that the numerical results are consistent with theoretical conclusions. Moreover, it is shown that the reduced FD scheme based on the POD method is feasible and efficient in solving the FD scheme for the non-stationary Stokes equation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号