首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of various incidence angles on film cooling effectiveness of an axial turbine blade cascade with leading edge ejection from two rows of cooling holes is numerically investigated. The rows are located in the vicinity of the stagnation line. One row is located on the suction side and the other one is on the pressure side. The predicted pressure field for various blowing ratios (M = 0.7, 1.1 and 1.5) is compared with available experimental results at the design condition. Moreover, the effect of various incidence angles (?10°, ?5°, 0°, 5° and 10°) at three blowing rates is investigated by analyzing the results of both laterally averaged and area averaged values of adiabatic film cooling effectiveness. Numerical results indicate that the incidence angle can strongly affect the thermal protection of the blade at low blowing ratio but becomes less dominant at high blowing ratio. In fact, for the low blowing ratio, a small change in the incidence angle that relates to the design condition can deeply affect the thermal protection of the blade, which is evident from the laterally and area averaged film cooling effectiveness distributions.  相似文献   

2.
This paper reports a computational investigation on the effects of mainstream turbulence intensity on film cooling effectiveness from trenched holes over a symmetrical blade. Computational solutions of the steady, Reynolds-Averaged Navier–Stokes equations are obtained using a finite volume method with k − ε Turbulence model. Whenever possible, computational results are compared with experimental ones from data found in the open literature. Computational results are presented for a row of 25° forward-diffused film hole within transverse slot injected at 35° to AGTB symmetrical blade. Four blowing ratios, M = 0.3, 0.5, 0.9 and 1.3 are studied together with four mainstream turbulence intensities of Tu = 0.5, 2, 4 and 10%. Results indicate that the trenched shaped holes tend to give better film cooling effectiveness than that obtained from discrete shaped holes for all blowing ratios and all turbulence intensities. The trenching of shaped holes has changed the optimum blowing ratio and also the location of re-attachment of separated jet at high blowing ratios. Moreover, it has been found that the effect of mainstream turbulence intensity for trenched shaped holes is similar to that obtained for discrete shaped holes with the exception that the sensitivity of film cooling effectiveness to turbulence intensity has decreased for trenched shaped holes.  相似文献   

3.
 The film cooling performance on a convex surface subjected to zero and favourable pressure gradient free-stream flow was investigated. Adiabatic film cooling effectiveness values were obtained for five different injection geometries, three with cylindrical holes and two with shaped holes. Heat transfer coefficients were derived for selected injection configurations. CO2 was used as coolant to simulate density ratios between coolant and free-stream close to gas turbine engine conditions. The film cooling effectiveness results indicate a strong dependency on the free-stream Mach number level. Results obtained at the higher free-stream Mach number show for cylindrical holes generally and for shaped holes at moderate blowing rates significant higher film cooling effectiveness values compared to the lower free-stream Mach number data. Free-stream acceleration generally reduced adiabatic film cooling effectiveness relative to constant free-stream flow conditions. The different free-stream conditions investigated indicate no significant effects on the corresponding heat transfer increase due to film injection. The determined heat flux ratios or film cooling performance indicated that coolant injection with shaped film cooling holes is much more efficient than with cylindrical holes especially at higher blowing rates. Heat flux penalties can occur at high blowing rates when using cylindrical holes. Received on 29 May 2000  相似文献   

4.
 The results from an experimental investigation of unsteady boundary layer behavior on a linear turbine cascade are presented in this paper. To perform a detailed study on unsteady cascade aerodynamics and heat transfer, a new large-scale, high-subsonic research facility for simulating the periodic unsteady flow has been developed. It is capable of sequentially generating up to four different unsteady inlet flow conditions that lead to four different passing frequencies, wake structures, and freestream turbulence intensities. For a given Reynolds number, two different unsteady wake formations are utilized. Detailed unsteady boundary layer velocity. turbulence intensity, and pressure measurements are performed along the suction and pressure surfaces of one blade. The results display the transition and development of the boundary layer, ensemble-averaged velocity, and turbulence intensity. Received: 23 September 1996/Accepted: 19 February 1997  相似文献   

5.
Detached eddy simulation (DES) has been carried out to study a three-dimensional trailing-edge (TE) cutback turbine blade model with five rows of staggered circular pin-fin arrays inside the cooling passage, in order to evaluate the cooling performance in relation to coolant ejection slot angle. Simulations were performed by adopting a shear-stress transport k-ω turbulence model, and the effects of three different ejection slot angles 5°, 10° and 15° were investigated in terms of the characteristics of adiabatic film-cooling effectiveness, coefficient of discharge, and vortex shedding frequencies, respectively. The results obtained have shown that the TE cutback blade cooling with a 5° coolant ejection slot angle produced a better heat transfer coefficient than the other two ejection slot angles tested. The distributions of adiabatic film-cooling effectiveness along the cutback walls were found to be sensitive to the coolant ejection slot angle, e.g. the increase of ejection slot angle to 15° yielded near unity of cooling effectiveness along the entire breakout walls, whereas the decrease of ejection slot angle caused a drastic decay of cooling effectiveness after the maximum effectiveness has been reached. Of the three angles studied, a TE cutback blade model with a 15° ejection slot angle produced an optimum film-cooling effectiveness. In the breakout region, vortex shedding was observed along the shear layer between the hot gas and the coolant airflow. The shedding frequencies were evaluated to be 2.93, 2.21, and 2.18 kHz for the ejection slot angles of 5°, 10° and 15°, respectively. The findings from this study could be useful to improve existing TE cutback turbine blade design to achieve optimum film-cooling performance.  相似文献   

6.
This paper discussed a method of combining a full automatic multi-objective optimization and conjugate heat transfer calculation to obtain optimal cooling layouts on a transonic high pressure guide vane under a realistic turbine working condition. The improvement in cooling design from the optimized models was analyzed in detail, along with a discussion of sensitivities of two objective functions to five design variables. The full automatic method comprises the process of geometry creation, mesh generation, numerical solution and post data analysis. The vane is solid and the end-wall is arranged in a linear cascade. On the end-wall, film holes are all cylindrical and classified in five regions, with region A near the leading edge of the vane, region B near the suction side, regions C and D near the pressure side, and region E for the rest. Five design variables are three pitch-to-hole ratios in regions B, D, E and two compound angles of film holes in regions A and D. Two selected objective functions are area averaged overall cooling effectiveness of the end-wall and aerodynamic losses in a cross-plane at x/Cax = 1.06 just downstream of the outlet of the cascade. For the optimization process, the multi-objective genetic algorithm based on the Non-dominated Sorted Genetic Algorithm-II was applied. The Latin hypercube sampling method was used to choose 21 experimental design points in the design space, which are also the sources for constructing the surrogate models with the Kriging model. The results demonstrate that the method using full automatic optimization and conjugate heat transfer calculation has achieved an increase of 8.7%–9.5% in area-averaged overall cooling effectiveness and a reduction of about 4.8%–6.1% in aerodynamic losses. The highest increase in cooling effectiveness exists in the region near the pressure side with a mild increase in the middle of the passage. The largest heat flux reduction exists in the regions near the pressure side and the crown of the suction side. The change of compound angle in region A near the leading edge has a negligible influence on overall cooling effectiveness but a high impact on aerodynamic losses. It's advisable to maintain the compound angle and pitch-to-diameter ratio at low values in region D near the pressure side to obtain high cooling performance.  相似文献   

7.
Thin-film technology has been used to measure the heat transfer coefficient and cooling effectiveness over heavily film cooled nozzle guide vanes (NGVs). The measurements were performed in a transonic annular cascade which has a wide operating range and simulates the flow in the gas turbine jet engine. Engine-representative Mach and Reynolds numbers were employed and the upstream free-stream turbulence intensity was 13%. The aerodynamic and thermodynamic characteristics of the coolant flow (momentum flux and density ratio between the coolant and mainstream) have been modelled to represent engine conditions by using a foreign gas mixture of SF6 and Argon. Engine-level values of heat transfer coefficient and cooling effectiveness have been obtained by correcting for the different molecular (thermal) properties of the gases used in the engine-simulated experiments to those which exist in the true engine environment. This paper presents the best combined heat transfer coefficient and effectiveness data currently available for a fully cooled, three-dimensional NGVs at engine conditions.  相似文献   

8.
This paper describes the results of an experimental investigation into the film cooling effectiveness and the heat transfer characteristics of two staggered rows of compound angle holes. The effects of hole spacings and turbulence intensity on film cooling and heat transfer characteristic are investigated for three blowing rates; 0.5, 1.0 and 1.7. An attempt has been made to correlate the film cooling effectiveness results using a two dimensional correlation group. The increase of spanwise hole spacing results in a reduction in the film cooling effectiveness and an increase in the Stanton number. Increasing the freestream turbulence intensity has caused a significant reduction in the local film cooling effectiveness but increased the Stanton number, especially at blowing rate of 0.5.  相似文献   

9.
The present paper shows the results of an experimental investigation into the unsteadiness of coolant ejection at the trailing edge of a highly loaded nozzle vane cascade. The trailing edge cooling scheme features a pressure side cutback with film cooling slots, stiffened by evenly spaced ribs in an inline configuration. Cooling air is also ejected through two rows of cylindrical holes placed upstream of the cutback. Tests were performed with a low inlet turbulence intensity level (Tu1 = 1.6%), changing the cascade operating conditions from low speed (M2is = 0.2) up to high subsonic regime (M2is = 0.6), and with coolant to main stream mass flow ratio varied within the 0.5–2.0% range. Particle Image Velocimetry (PIV) and flow visualizations were used to investigate the unsteady mixing process taking place between coolant and main flow downstream of the cutback, up to the trailing edge. For all the tested conditions, the results show the presence of large coherent structures, which presence is still evident up to the trailing edge. Their shape and direction of rotation change with injection conditions, as a function of coolant to mainstream velocity ratio, strongly influencing the thermal protection capability of the injected coolant flow. The Mach number increase is only responsible for a positioning of such vortical structures closer to the wall, while the Strouhal number almost remains unchanged.  相似文献   

10.
11.
Typical film-cooling configuration of a symmetrical turbine blade leading edge is investigated using a three-dimensional finite volume method and a multi-block technique. The computational domain includes the curved blade surface as well as the coolant regions and the plenum. The turbulence is approximated by a two layer k– model. The computations have been performed using the TLV two-layer and the TLVA models. However, the utilization of the TLV and TLVA models has not improved the prediction of the lateral averaged film cooling effectiveness of gas turbine blades when compared with those obtained using wall function strategy.The general features of film cooling such as jet blow-off, high turbulence intensity in the shear layer, and secondary rotating vortices are captured in the present study. Comparison between predicted and experimental results indicates that the trends of the thermal field are well predicted in most cases. In the second part of this study, the influence of lateral injection angle on lateral averaged adiabatic film cooling effectiveness is investigated by varying the lateral injection angle around the experimental value ( = 25°, 30°, 35° and 60° spanwise to the blade surface). It was found that the best coverage and consequently, the maximum film cooling effectiveness are provided by the most extremely inclined injection angle, which is 25° in this investigation.  相似文献   

12.
Effects of embedded longitudinal vortices on heat transfer in film-cooled turbulent boundary layers at different blowing ratios are discussed. These results were obtained in boundary layers at free-stream velocities of 10 and 15 m/s. Film coolant was injected from a single row of holes at blowing ratios of 0.47–1.26. A single longitudinal vortex was induced upstream of the film-cooling holes using a half-delta wing attached to the wind tunnel floor. Heat transfer measurements were made downstream of injection using a constant heat flux surface with 126 thermocouples for surface temperature measurements. For all blowing ratios examined, the embedded vortices cause significant alterations to wall heat transfer and to film cooling distributions. Measurrments of mean temperatures and mean velocities in spanwise planes show that high wall heat transfer regions are associated with regions of high near-wall longitudinal velocity where very little film coolant is present. In addition to high heat transfer regions associated with the vortex downwash, there are also secondary heat transfer peaks. These secondary peaks develop due to shear layer mixing and interaction between the vortex and cooling jets and become higher in magnitude and more persistent with downstream distance as the blowing ratio increases from 0.47 to 1.26.  相似文献   

13.
Flow features and film cooling performance of five configurations of double-row, cylindrical holes, upstream of an E3 vane, in a linear cascade are numerically investigated. This simulation is completed using a verified turbulence model at four blowing ratios (M = 0.5, 1.0, 1.5, 2.0). The first three configurations have two rows of cylindrical holes, each row with the same compound angle (β=-45°, 0° or 45°), while the other two have two rows with opposite compound angles (β=-45°, 45° and β=45°, -45°), which are also referred to as double-jet film cooling (DJFC) holes. The primary effects on the downstream endwall and the secondary effects on the nearby airfoil of the cooled passage are analyzed and discussed in detail. Results show that at low blowing ratios the movement of the coolant is denominated by the interaction between the jets and vortices resulting in similar film coverage on both the endwall and airfoil. The effect of vortices is reduced at high blowing ratios. It is also shown that the movement of the coolant is determined by the initial velocity direction, as well as the film cooling configuration.  相似文献   

14.
Numerical modelling of film cooling from converging slot-hole   总被引:1,自引:0,他引:1  
This paper presents a numerical prediction of a new 3D film cooling hole geometry, the converging slot-hole or console. The console geometry is designed in order to improve the heat transfer and aerodynamic loss performance of turbine vane and rotor blade cooling systems without loosing the mechanical strength of a row of discrete holes. The cross section of the console changes from a circular shape at the inlet to a slot at the exit. Previous successful application of a new anisotropic DNS based two-layer turbulence model to cylindrical and shaped hole injections is extended to predict film cooling for the new console geometry. The suitability of the proposed turbulence model for film cooling flow is validated by comparing the computed and the measured wall-temperature distributions of cylindrical hole injections. The result shows that the anisotropic eddy-viscosity/diffusivity model can correctly predict the spanwise spreading of the temperature field and reduce the strength of the secondary vortices. Comparative computations of the adiabatic film cooling effectiveness associated with the three geometries tested in the present study (cylindrical, shaped, and console) show that the new console film-cooling hole geometry is definitely superior to the other geometries as shown by the uniform lateral spreading of the effectiveness with a slight enhancement downstream of the intersection of the two consoles.  相似文献   

15.
低雷诺数流动对高空动力装置, 特别是涡轮部件的性能产生重要的影响. 本文采用具有7阶精度的差分格式, 通过直接求解二维瞬态可压缩Navier-Stokes方程组, 对雷诺数为241 800 (基于叶片弦长)时的叶片表面带有热传导效应的平面涡轮叶栅流动进行了二维直接数值模拟, 对低雷诺数平面涡轮叶栅流动的非定常流动现象作了初步的探索.数值结果表明:在叶栅通道入口处, 流场的非定常性很弱;在叶栅尾缘处, 具有正负涡量的尾涡交替地从压力面和吸力面上脱落;周期性的涡脱落使得叶栅通道内和尾迹区的总压发生(准)周期的变化, 并且, 尾迹区总压变化主频率是通道内总压变化主频率的2倍;在时均流场中, 叶片表面压力的分布与实验值吻合良好, 表征热传导效应的斯坦顿数除湍流区外与实验值基本吻合;尾迹区速度脉动的2阶统计量与圆柱绕流尾迹区速度脉动2阶统计量具有基本相似的分布特征.  相似文献   

16.
This paper addresses two important issues relevant to efficiency measurements in film-cooled annular cascades: the definition of the ideal flow to be used in loss calculation, and the measurements that are necessary for such loss calculation. The paper also addresses the question of the correct parameterisation of coolant density effects, showing that the momentum flux ratio, rather than the blowing rate, is the most appropriate parameter. Experiments examining the effect of extensive aerofoil surface film cooling on the aerodynamic efficiency of an annular cascade of transonic nozzle guide vanes are reported. A dense foreign gas (SF6/Ar mixture) is used to simulate engine representative coolant-to-mainstream density ratios, momentum ratios and blowing rates under ambient temperature conditions. Experiments are also conducted with air coolant to study the effect of density ratio on efficiency. The flowfield measurements have been obtained using a four-hole pyramid probe in a short duration blowdown facility which correctly models engine Reynolds and Mach numbers. This work compares the measured aerodynamic efficiencies of uncooled vanes with those which employ an extensive amount of cooling. The engine-representative cooling geometry investigated features 14 rows of cylindrical cooling holes, and a second geometry where 8 of these rows are replaced by holes having a fan-shaped exit. The effects of adding trailing edge slot ejection are also presented. By selectively blocking rows of holes, the cumulative effect on the mid-span efficiency of adding rows of cooling holes has also been determined. Experimental results are presented as area traverse maps (total pressure, isentropic Mach number and flow angles), from which the relative changes in efficiency due to film cooling have been calculated. These calculations reveal that the presence of foreign-gas coolant from the cylindrical-hole geometry increases the aerodynamic loss (relative to the uncooled baseline) by 6.7%; and coolant from the fan-shaped holes increases the loss by 15%. The effects of different assumptions for the coolant total pressure are shown to significantly change the measured loss; if the loss measurements are based on the mainstream total pressure, rather than the total pressure in the coolant cavity, the respective increase in loss (relative to the uncooled baseline) of cylindrical and fan-shaped holes is 4.5% and 12.5%. Experimental data is compared with loss predictions using a Hartsel model. Received: 4 December 1998/Accepted: 1 September 1999  相似文献   

17.
A high-order accurate CFD solver, based on the Discontinuous Galerkin (DG) finite element method, is here employed to compute the heat transfer, with and without film coolant injection, around a turbine vane extensively tested in a wind tunnel. The numerical solution makes also use of a high-order polynomial representation of the airfoil curved boundary in order to minimize the numerical sources of error, leaving possibly only those related to the physical model adopted. The objective of the work is therefore twofold: on the one hand to provide a detailed investigation, often beyond the reach of the experiments, of the complex flow field arising in a film-cooled gas turbine cascade, on the other hand to ascertain the limits of the Reynolds-averaged Navier-Stokes (RANS) approach and its associated turbulence model when using high-order accurate methods. The DG formulation is briefly reviewed, as well as the experimental apparatus and the measuring technique, and then the code is applied to the computation of various test cases characterized by different reference Reynolds and Mach numbers. Two-dimensional results (up to seventh-order accurate) obtained both with the high- and low-Reynolds version of the k-ω model employed are presented. Reasonably good agreement between experimental and numerical results is obtained, even though the outcomes are far from being completely satisfactory especially for flow regimes in the low Reynolds number range. This is due to the lack of suitable modeling of the laminar-turbulent transition process taking place around the blade leading edge. Such a complex phenomenon is out of reach of the modeling capabilities of the high-Re k-ω model, while can be roughly mimicked by the low-Re version of the model, which is able to provide a delayed onset of the turbulence quantities along the blade surface.Third-order accurate computation of the three-dimensional turbine vane are also presented in this work and compared with available measurements to investigate the relevant fluid flow phenomena occurring and to discuss significant issues related to an accurate prediction of the turbine wall heat transfer.  相似文献   

18.
The focus of the first part of this numerical study is to investigate the effects of two new configurations: (1) slot with cylindrical end and (2) slot with median cylindrical hole, generated by the combination between two film cooling configurations: cylindrical hole and uniform slot. Computational results are presented for a row of coolant injection holes on each side of an asymmetrical turbine blade model near the leading edge. For each configuration, three values of the radius are taken: R = 0.4, R = 0.8 and R = 1.2. The six cases simulations, thus obtained, are conducted for the same density ratio of 1.0 and the same inlet plenum pressure. A new parameter, Rc, is defined to measure the rate of blade coverage by the film cooling. Results show that, at the pressure side; for the two new configurations, the six studied cases exceed the case baseline in cooling effectiveness term with the best result obtained for R = 0.8 (case 2). For the suction side, only configurations with R = 0.4 (cases 1 and 4) provide an increase of film effectiveness compared to the case baseline. The following configuration: Cases 1 or 4 at the suction side and case 2 at the pressure side, gets the best thermal protection because of their higher coverage and strong cooling effectiveness.  相似文献   

19.
This paper reports an experimental procedure for the determination of the local heat transfer coefficient in the vicinity of the leading edge of a film-cooled gas turbine blade. By invoking the heat-mass transfer analogy, and measuring the sublimation rate of naphthalene, the influence of film coolant ejection on the magnitude of the local transport coefficients is determined. A novel apparatus and experimental technique have been designed to eliminate the need to know the physical properties of the naphthalene. Results of experiments using a ‘relative mass transfer method’ for a blowing rate (injection velocity to mainstream velocity ratio) from 0·2 to 1·0 and a mainstream Reynolds number of 3·48 × 104 are presented and compared with previous heat transfer data.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号