首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Researchers frequently use two‐dimensional polyacrylamide gel electrophoresis (2D‐PAGE) prior to mass spectrometric analysis in a proteomics approach. The i2D‐PAGE method, which ‘inverts’ the dimension of protein separation of the conventional 2D‐PAGE, is presented in this publication. Protein lysate of Channa striata, a freshwater snakehead fish, was separated based on its molecular weight in the first dimension and its isoelectric point in the second dimension. The first‐dimension separation was conducted on a gel‐free separation device, and the protein mixture was fractionated into 12 fractions in chronological order of increasing molecular weight. The second‐dimension separation featured isoelectric focusing, which further separated the proteins within the same fraction according to their respective isoelectric point. Advantages of i2D‐PAGE include better visualisation of the isolated protein, easy identification on protein isoforms, shorter running time, customisability and reproducibility. Erythropoietin standard was applied to i2D‐PAGE to show its effectiveness for separating protein isoforms. Various staining methods such as Coomassie blue staining and silver staining are also applicable to i2D‐PAGE. Overall, the i2D‐PAGE separation method effectively separates protein lysate and is suitable for application in proteomics research.  相似文献   

2.
With the growth of the biopharmaceutical industry, there is a need for rapid size‐analysis of proteins on the megaDalton scale. The large pore sizes needed for such separations cannot be easily reached by pushing the current limits of size‐exclusion chromatography or gel electrophoresis. The concept detailed here is the formation of arbitrarily wide pores by packing nonporous colloidal silica in capillaries. This method can be called packed‐capillary electrophoresis, or “pCE”. Electrophoresis of protein standards (11–155 kDa) by pCE, using 345 nm diameter particles in 100 μm diameter capillaries, gives 2x higher resolution than a typical PAGE gel in 1/6 of the time. The electropherograms show that pCE is highly efficient, with half‐micrometer plate heights for all seven standards, giving 105 plates for a 50 mm length. The large pore radius of 65 nm enables baseline resolution of proteins of 0.72, 1.048 and 1.236 MDa in less than 15 min. The short separation time of pCE is attributed to the absence of small pores that restrict protein migration in gels. The pCE separation is applied to the analysis of a stressed pharmaceutical‐grade IgG4 sample, giving unprecedented baseline resolution of monomer, dimer, trimer and tetramer in less than 10 min.  相似文献   

3.
As an effective separation tool, free-flow electrophoresis has not been used for purification of low-abundance protein in complex sample matrix. Herein, lysozyme in complex egg white matrix was chosen as the model protein for demonstrating the purification of low-content peptide via an FFE coupled with gel fitration chromatography (GFC). The crude lysozyme in egg while was first separated via free-flow zone electrophoresis (FFZE). After that, the fractions with lysozyme activity were condensed via lyophilization. Thereafter, the condensed fractions were further purified via a GFC of Sephadex G50. In all of the experiments, a special poly(acrylamide- co-acrylic acid) (P(AM-co-AA)) gel electrophoresis and a mass spectrometry were used for identification of lysozyme. The conditions of FFZE were optimized as follows: 130 μL/min sample flow rate, 4.9 mL/min background buffer of 20 mM pH 5.5 Tris-Acetic acid, 350 V, and 14 °C as well as 2 mg/mL protein content of crude sample. It was found that the purified lysozyme had the purity of 80% and high activity as compared with its crude sample with only 1.4% content and undetectable activity. The recoveries in the first and second separative steps were 65% and 82%, respectively, and the total recovery was about 53.3%. The reasons of low recovery might be induced by diffusion of lysozyme out off P(AM-co-AA) gel and co-removing of high-abundance egg ovalbumin. All these results indicated FFE could be used as alternative tool for purification of target solute with low abundance.  相似文献   

4.
Summary The total protein of the 50S ribosomal subunit (TP50) from the archaebacterium Sulfolobus acidocaldarius was prefractionated by discontinuous reversed-phase HPLC with several column combinations. The purity of the eluted fractions was tested by sodium dodecylsulphate polyacrylamide gel electrophoresis (SDS-PAGE) or two-dimensional PAGE (2D-PAGE). With regard to the load capacity and selectivity, best results were obtained with a semi-preparative three-column combination (total length 67.5cm). Twelve A230 units of TP50 were separated into 35 fractions, 19 of which contained nearly pure proteins. When the sample load was increased to 176A230 units (109mg), 13 of 28 collected fractions still contained nearly pure proteins. The selectivity of a semi-preparative short-column combination (total length 12cm) was similar to that of the semi-preparative column combination, and separation time could be reduced to one third of that required for the longer column combination. The load capacity of the short-column combination was lower than that of the semi-preparative column combination.  相似文献   

5.
The milk of the one‐humped camel (Camelus dromedarius) reportedly offers medicinal benefits, perhaps because of its unique bioactive components. Milk proteins were determined by (1) two‐dimensional gel electrophoresis and peptide mass mapping and (2) liquid chromatography–tandem mass spectrometry (LC–MS/MS) following one‐dimensional polyacrylamide gel electrophoresis. Over 200 proteins were identified: some known camel proteins including heavy‐chain immunoglobulins and others exhibiting regions of exact homology with proteins from other species. Indigenous peptides were also identified following isolation and concentration by two strategies: (1) gel‐eluted liquid fraction entrapment electrophoresis and (2) small‐scale electrophoretic separation. Extracts were analyzed by LC–MS/MS and peptides identified by matching strategies, by de novo sequencing and by applying a sequence tag tool requiring similarity to the proposed sequence, but not an exact match. A plethora of protein cleavage products including some novel peptides were characterized. These studies demonstrate that camel milk is a rich source of peptides, some of which may serve as nutraceuticals. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
The use of a poly(methylmethacrylate) capillary electrophoresis chip, provided with a high sample load capacity separation system (a 8500 nL separation channel combined with a 500 nL sample injection channel) and a pair of on‐chip conductivity detectors, for zone electrophoresis (ZE) determination of oxalate in beer was studied. Hydrodynamic and electroosmotic flows of the solution in the separation compartment of the chip were suppressed and electrophoresis was a dominant transport process in the separations performed on the chip. A low pH of the carrier electrolyte (3.8), implemented by aspartic acid and bis‐tris propane, provided an adequate selectivity in the separation of oxalate from anionic beer constituents and, at the same time, also a sufficient sensitivity in its conductivity detection. Under our working conditions, this anion could be detected at a 0.5 μmol/L concentration also in samples containing chloride (a major anionic constituent of beer) at a 1800 higher concentration. Such a favorable analyte/matrix concentration ratio made possible accurate and reproducible [typically, 2–5% relative standard deviation (RSD) values of the peak areas of the analyte in dependence on its concentration in the sample] determination of oxalate in 500 nL volumes of 20–50‐fold diluted beer samples. Short analysis times (about 200 s), minimum sample preparation, and reproducible migration times of this analyte (0.5–1.0% RSD values) were characteristic for ZE on the chip.  相似文献   

7.
To separate and analyze giant and small proteins in the same electrophoresis gel, we have used a 3–15% polyacrylamide gradient gel containing 2.6% of the crosslinker bisacrylamide and 0.2 M of Tris‐acetate buffer (pH 7.0). Samples were prepared in a sample buffer containing lithium dodecyl sulphate and were run in the gel described above using Tris‐Tricine‐SDS‐sodium bisulfite buffer, pH 8.2, as electrophoresis buffer. Here, we show that this system can be successfully used for general applications of SDS‐PAGE such as CBB staining and immunoblot. Thus, by using Tris‐acetate 3–15% polyacrylamide gels, it is possible to simultaneously analyze proteins, in the mass range of 10–500 kDa, such as HERC1 (532 kDa), HERC2 (528 kDa), mTOR (289 kDa), Clathrin heavy chain (192 kDa), RSK (90 kDa), S6K (70 kDa), β‐actin (42 kDa), Ran (24 kDa) and LC3 (18 kDa). This system is highly sensitive since it allows detection from as low as 10 μg of total protein per lane. Moreover, it has a good resolution, low cost, high reproducibility and allows for analysis of proteins in a wide range of weights within a short period of time. All these features together with the use of a standard electrophoresis apparatus make the Tris‐acetate‐PAGE system a very helpful tool for protein analysis.  相似文献   

8.
Combining electrophoresis with a cellulose acetate membrane-based technique, we developed a simple and low-cost method, named cellulose acetate membrane-based small lanes (CASL), for protein electrophoresis. A home-made capillary plotter controlled by a 3D moving stage was used to create milli-to-micro channels by printing poly(dimethylsiloxane) on to a hydrophilic cellulose acetate membrane. In the hydrophilic channels, 5 nL protein mixture was separated on the basis of electro-migration under an electric field. Compared with polyacrylamide gel electrophoresis (PAGE), CASL resulted in higher protein signal intensity for separation of mixtures containing the same mass of protein. The platform was easily fabricated at low cost (approx. $0.005 for each 1-mm-wide channel), and separation of three protein mixtures was completed in 15 min. Both electrophoresis time and potential affected the separation. Rather than chromatographic separation, this method accomplished application of microchannel techniques for cellulose acetate membrane-based protein electrophoresis. It has potential in proteomic analysis, especially for rapid, low-cost, and low-volume sample analysis in clinical diagnosis.  相似文献   

9.
《Electrophoresis》2017,38(24):3147-3154
Antimicrobial peptides (AMPs) are usually small and cationic biomolecules with broad‐spectrum antimicrobial activities against pathogens. Purifying them from complex samples is essential to study their physiochemical properties. In this work, free‐flow zone electrophoresis (FFZE) was utilized to purify AMPs from yeast fermentation broth. Meanwhile, gel filtration chromatography (GFC) was conducted for comparison. The separation efficiency was evaluated by SDS‐PAGE analysis of the fractions from both methods. Our results demonstrated as follows: (i) FFZE had more than 30‐fold higher processing capacity as compared with GFC; (ii) FFZE could achieve 87% purity and 89% recovery rate while in GFC these parameters were about 93 and 82%, respectively; (iii) the former had ∼2‐fold dilution but the latter had ∼13‐fold dilution. Furthermore, Tricine‐SDS‐PAGE, Native‐PAGE, and gel IEF were carried out to characterize the purified AMPs. We found that two peptides existed as a pair with the molecular mass of ∼5.5 and 7.0 kDa, while the same pI 7.8. These two peptides were proved to have the antimicrobial activity through the standardized agar diffusion method. Therefore, FFZE could be used to continuously purify AMPs with high bioactivity, which will lead to its wide application in the clinical and pharmaceutical fields.  相似文献   

10.
A novel method for performing 2‐D map analysis is here reported, consisting in a modification of the second dimension run, which is performed not in a conventional square‐ or rectangular‐size gel, but in a radial surface. This has the advantage of permitting resolution of closely adjacent bands, representing strings of isoforms of similar or identical mass but of closely spaced isoelectric points. When used in a mono‐dimensional, SDS‐PAGE format, this system allows the simultaneous running of 62 sample tracks. Examples are given of separation of plasma and urinary proteins.  相似文献   

11.
Columns switch recycling size exclusion chromatography (csrSEC) was proposed to achieve high resolution protein separation with good biocompatibility. Proteins were firstly separated by two serially coupled SEC columns, and fractions were in sequence switched back to the first column by two-position valves for further separation in terms of close-loop recycling until satisfactory resolution was achieved. Compared to SEC, the separation window was broadened by increasing column length via cycling without further increase on back pressure. Compared to recycling SEC (rSEC), the overtaking of later eluted components by early eluted ones after several cycles could be avoided for complex sample analysis, by parking fractions in the second SEC column before transferred in turn back to the first one for cycling ordinally. In our experiments, the baseline separation of five proteins with molecular weight ranging from 10 kDa to 80 kDa was achieved by csrSEC. Furthermore, a multidimensional csrSEC–RPLC platform was constructed, and peak capacity up to 3600 was obtained for protein separation. All these results demonstrated that csrSEC is a promising protein separation mode with good biocompatibility, broadened separation window and improved resolution.  相似文献   

12.
Highly homogenous α zein protein was isolated from maize kernels in an environment‐friendly process using 95% ethanol as solvent. Due to the polyploidy and genetic polymorphism of the plant source, the application of high resolution separation methods in conjunction with precise analytical methods, such as MALDI‐TOF‐MS, is required to accurately estimate homogeneity of products that contain natural zein protein. The α zein protein product revealed two main bands in SDS‐PAGE analysis, one at 25 kDa and other at 20 kDa apparent molecular mass. Yet, high resolution 2DE revealed approximately five protein spot groups in each row, the first at ca. 25 kDa and the second at ca. 20 kDa. Peptide mass fingerprinting data of the proteins in the two dominant SDS‐PAGE bands matched to 30 amino acid sequence entries out of 102 non‐redundant data base entries. MALDI‐TOF‐MS peptide mapping of the proteins from all spots indicated the presence of only α zein proteins. The most prominent ion signals in the MALDI mass spectra of the protein mixture of the 25 kDa SDS gel band after in‐gel digestion were found at m/z 1272.6 and m/z 2009.1, and the most prominent ion signals of the protein mixture of the 20 kDa band after in‐gel digestion were recorded at m/z 1083.5 and m/z 1691.8. These ion signals have been found typical for α zein proteins and may serve as marker ion signals which upon chymotryptic digestion reliably indicate the presence of α zein protein in two hybrid corn products.  相似文献   

13.
14.
Polypropylene (PP) capillary‐channeled polymer (C‐CP) fiber stationary phases are investigated for applications in HPLC. Specifically, the roles that fiber size and shape, linear velocity, interstitial fraction, and column inner diameter play in separation efficiency were evaluated using a uracil and butylparaben mixture eluted under isocratic conditions. Four fiber types, having nominal diameters ranging from 30 to 65 μm, were used in 250 mm × 2.1 mm columns. Optimum flow characteristics, as judged by plate height and resolution, were observed for 40 μm diameter PP C‐CP fibers packed at an interstitial fraction of ~0.63, over a broad range of linear velocities (~2 to 37 mm/s). The influence of column inner diameter was studied on 1.5, 2.1, and 4.6 mm columns packed at the optimal interstitial fraction. The best performing column in terms of plate height and resolution was the 2.1 mm inner diameter. C‐CP columns were also evaluated for the separation of a protein mixture composed of ribonuclease A, cytochrome c, and transferrin. Results obtained with the biomacromolecules mixture validate the optimal structural and operative conditions determined with the small solutes, laying the groundwork towards biomacromolecule applications, focusing more on the chemical aspects of separations.  相似文献   

15.
《Electrophoresis》2017,38(13-14):1764-1770
Gel electrophoresis is one of the most applied and standardized tools for separation and analysis of macromolecules and their fragments in academic research and in industry. In this work we present a novel approach for conducting on‐demand electrophoretic separations of DNA molecules in open microfluidic (OM) systems on planar polymer substrates. The approach combines advantages of slab gel, capillary‐ and chip‐based methods offering low consumable costs (<0.1$) circumventing cost‐intensive microfluidic chip fabrication, short process times (5 min per analysis) and high sensitivity (4 ng/μL dsDNA) combined with reasonable resolution (17 bases). The open microfluidic separation system comprises two opposing reservoirs of 2–4 μL in volume, a semi‐contact written gel line acting as separation channel interconnecting the reservoirs and sample injected into the line via non‐contact droplet dispensing and thus enabling the precise control of the injection plug and sample concentration. Evaporation is prevented by covering aqueous structures with PCR‐grade mineral oil while maintaining surface temperature at 15°C. The liquid gel line exhibits a semi‐circular cross section of adaptable width (∼200–600 μm) and height (∼30–80 μm) as well as a typical length of 15–55 mm. Layout of such liquid structures is adaptable on‐demand not requiring time consuming and repetitive fabrication steps. The approach was successfully demonstrated by the separation of a standard label‐free DNA ladder (100–1000 bp) at 100 V/cm via in‐line staining and laser induced fluorescent end‐point detection using an automated prototype.  相似文献   

16.
Although the extraction of intact proteins from polyacrylamide gels followed by mass spectrometric molecular mass determination has been shown to be efficient, there is room for alternative approaches. Our study evaluates ethylene glycol diacrylate, a cleavable cross‐linking agent used for a new type of dissolvable gels. It attains an ester linkage that can be hydrolyzed in alkali conditions. The separation performance of the new gel system was tested by 1D and 2D SDS‐PAGE using the outer chloroplast envelope of Pisum sativum as well as a soluble protein fraction of human lymphocytes, respectively. Gel spot staining (CBB), dissolving, and extracting were conducted using a custom‐developed workflow. It includes protein extraction with an ammonia–SDS buffer followed by methanol treatment to remove acrylamide filaments. Necessary purification for MALDI‐TOF analysis was implemented using methanol–chloroform precipitation and perfusion HPLC. Both cleaning procedures were applied to several standard proteins of different molecular weight as well as ‘real’ biological samples (8–75 kDa). The protein amounts, which had to be loaded on the gel to detect a peak in MALDI‐TOF MS, were in the range of 0.1 to 5 μg, and the required amount increased with increasing mass.  相似文献   

17.
We developed a novel polyacrylamide gel electrophoresis (PAGE) method to stack and separate human hemoglobins (Hbs) based on the concept of moving reaction boundary (MRB). This differs from the classic isotachophoresis (ITP)-based stacking PAGE in the aspect of buffer composition, including the electrode buffer (pH 8.62 Tris–Gly), sample buffer (pH 6.78 Tris–Gly), and separation buffer (pH 8.52 Tris–Gly). In the MRB-PAGE system, a transient MRB was formed between alkaline electrode buffer and acidic sample buffer, being designed to move toward the anode. Hbs carried partial positive charges in the sample buffer due to its pH below pI values of Hbs, resulting in electromigrating to the cathode. Hbs would carry negative charges quickly when migrated into the alkaline electrode buffer and be transported to the anode until meeting the sample buffer again. Thus, Hbs were stacked within a MRB until the transient MRB reached the separation buffer and then separated by zone electrophoresis with molecular sieve effect of the gel. The experimental results demonstrated that there were three clear and sharp protein zones of Hbs (HbA1c, HbA0, and HbA2) in MRB-PAGE, in contrast to only one protein zone (HbA0) in ITP-PAGE for large-volume loading (≥15 μl), indicating high stacking efficiency, separation resolution, and good sensitivity of MRB-PAGE. In addition, MRB-PAGE was performed in a conventional slab PAGE device, requiring no special device. Thus, it could be widely used in separation and analysis of diluted protein in a standard laboratory.
Figure
Diagram of MRB-induced stacking in a slab PAGE. (A) arrangement of separation buffer (pH 8.01–9.55 Tris–Gly), sample buffer (pH 6.37–7.22 Tris–Gly), and electrode buffer (pH 8.21–9.05 Tris–Gly); (B) initial MRB formed between electrode and sample buffers for stacking of low-content Hbs in sample buffer under electric field; (C) MRB moving toward the anode and partly stacking of Hbs within the MRB; (D) quasi-complete stacking of Hbs via MRB closing to the separating gel; (E) separation of Hbs in a zone electrophoresis mode  相似文献   

18.
《Analytical letters》2012,45(1):95-102
Abstract

Four kinds of polyacrylamide gel electrophoresis (PAGE) were applied to insulin and peroxynitrite‐treated insulin. The Native‐PAGE had a better resolution than sodium dodecyl sulfate (SDS)‐PAGE, SDS‐urea‐PAGE, and even Tricine‐SDS‐PAGE. Reduction and nonreduction of insulin and peroxynitrite‐treated insulin in Native‐PAGE showed that four tyrosine residues in insulin molecular could be nitrated by peroxynitrite and that alkylation with iodoacetamide was better than no alkylation and alkylation with iodoacetic acid, which would introduce negative charges to the peptides. The method of Native‐PAGE was suitable to analysis of insulin and its analogs, even other peptides of low molecular weight.  相似文献   

19.
A feasibility study was performed using zone electrophoresis (ZE) coupled on‐line with isotachophoresis (ITP) sample pretreatment on a poly(methyl methacrylate) column‐coupling chip with integrated conductivity detection for direct determination of drugs in serum. Valproic acid (an antiepileptic drug), having a therapeutic range of 0.35–0.69 mmol/L (50–100 mg/L), was a test analyte while reference serum samples served as proteinaceous matrices. ITP provided in the ITP‐ZE combination a multitask sample pretreatment: (1) separation of the analyte from the serum matrix and its concentration into a narrow ITP band, (2) removal of the matrix constituents migrating in the ITP stack from the separation compartment of the chip, (3) ITP stacking of the drug released on a continuous electrophoretic decomposition of the drug‐protein complex. A high sample loadability, closely linked with the use of ITP in the first separation stage, made it possible to inject diluted serum samples with the aid of a 0.95 μL sample channel of the chip. Consequently, a 1–2 μmol/L concentration limit of quantitation for valproate from the response of the conductivity detector in the ZE stage of the combination was reached. The drug could be reliably determined in less than 10 minutes also in instances when its concentration in serum was below the lower value of the therapeutic range. 90–94% recoveries of valproate from serum samples were obtained in its direct ITP‐ZE determination when the filtration of the diluted serum (a 0.45 μm pore size filter) was the only pre‐column sample handling operation. No disturbances attributable to the precipitation of proteins from the loaded samples in the chip channels were detected.  相似文献   

20.
Summary This paper overviews several aspects of high performance capillary electrophoresis (HPCE), a promising new method of analytical and micropreparative separation of biochemically important samples. The basic migration equations of electrophoresis are first presented and the benefit of high fields for rapid analysis and high performance emphasized. Since power is generated with high voltages, Joule heating results and this heat must be dissipated. The use of capillary columns is shown to be important in efficient heat removal and in minimizing the temperature differences within the column. The various factors influencing band broadening are next described, and it is shown how plate counts close to 106 can be achieved. Various results from our laboratory on open tube and gel columns are then presented to illustrate the potential of this method. Chiral resolution of dansylated amino acids using a chiral metal chelate micelle in open tube HPCE is shown. With the gel columns, the baseline separation of a 2-chain variant from methionine growth hormone (met-hGH) under non-denaturing conditions at fields close to 1000 V/cm is presented. Finally, the micropreparative purification of a 20-mer oligonucleotide using the gel column is described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号