首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A method is introduced to discretize irregular and complex two‐dimensional fractured media. The geometry of the fractured media is first analysed by searching and treating the complex configurations. Based on that, the method generated a good mesh quality and allows for including finer grids. An incompressible two‐phase flow problem is solved to compare the developed method and a public method based on the approximation of a 1D fracture by the edges of a 2D finite element grid of the porous media. The comparison showed that the developed method (i) represents better the fractured domain by maintaining the geometric integrity of input surfaces and geologic data, (ii) provides, for sample and complex fractured domains, excellent and more accurate results, and (iii) is much less sensitive to the grid sizes. Furthermore, the method has to be more efficient than the other methods for transport problems and has to provide better predictable results; this is mainly based on point (ii) and because the method produces optimal triangular grids. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
This paper investigates the performance of preconditioned Krylov subspace methods used in a previously presented two‐fluid model developed for the simulation of separated and intermittent gas–liquid flows. The two‐fluid model has momentum and mass balances for each phase. The equations comprising this model are solved numerically by applying a two‐step semi‐implicit time integration procedure. A finite difference numerical scheme with a staggered mesh is used. Previously, the resulting linear algebraic equations were solved by a Gaussian band solver. In this study, these algebraic equations are also solved using the generalized minimum residual (GMRES) and the biconjugate gradient stabilized (Bi‐CGSTAB) Krylov subspace iterative methods preconditioned with incomplete LU factorization using the ILUT(p, τ) algorithm. The decrease in the computational time using the iterative solvers instead of the Gaussian band solver is shown to be considerable. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

3.
We present a theoretical solution for the Riemann problem for the five‐equation two‐phase non‐conservative model of Saurel and Abgrall. This solution is then utilized in the construction of upwind non‐conservative methods to solve the general initial‐boundary value problem for the two‐phase flow model in non‐conservative form. The basic upwind scheme constructed is the non‐conservative analogue of the Godunov first‐order upwind method. Second‐order methods in space and time are then constructed via the MUSCL and ADER approaches. The methods are systematically assessed via a series of test problems with theoretical solutions. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
A new method for computing the fluid flow in complex geometries using highly non‐smooth and non‐orthogonal staggered grid is presented. In a context of the SIMPLE algorithm, pressure and physical tangential velocity components are used as dependent variables in momentum equations. To reduce the sensitivity of the curvature terms in response to coordinate line orientation change, these terms are exclusively computed using Cartesian velocity components in momentum equations. The method is then used to solve some fairly complicated 2‐D and 3‐D flow field using highly non‐smooth grids. The accuracy of results on rough grids (with sharp grid line orientation change and non‐uniformity) was found to be high and the agreement with previous experimental and numerical results was quite good. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
Governing equations for a two‐phase 3D helical pipe flow of a non‐Newtonian fluid with large particles are derived in an orthogonal helical coordinate system. The Lagrangian approach is utilized to model solid particle trajectories. The interaction between solid particles and the fluid that carries them is accounted for by a source term in the momentum equation for the fluid. The force‐coupling method (FCM), developed by M.R. Maxey and his group, is adopted; in this method the momentum source term is no longer a Dirac delta function but is spread on a numerical mesh by using a finite‐sized envelop with a spherical Gaussian distribution. The influence of inter‐particle and particle–wall collisions is also taken into account. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
A numerical model has been developed for simulating density‐stratified flow in domains with irregular but simple topography. The model was designed for simulating strong interactions between internal gravity waves and topography, e.g. exchange flows in contracting channels, tidally or convectively driven flow over two‐dimensional sills or waves propagating onto a shoaling bed. The model is based on the non‐hydrostatic, Boussinesq equations of motion for a continuously stratified fluid in a rotating frame, subject to user‐configurable boundary conditions. An orthogonal boundary fitting co‐ordinate system is used for the numerical computations, which rely on a fourth‐order compact differentiation scheme, a third‐order explicit time stepping and a multi‐grid based pressure projection algorithm. The numerical techniques are described and a suite of validation studies are presented. The validation studies include a pointwise comparison of numerical simulations with both analytical solutions and laboratory measurements of non‐linear solitary wave propagation. Simulation results for flows lacking analytical or laboratory data are analysed a posteriori to demonstrate satisfaction of the potential energy balance. Computational results are compared with two‐layer hydraulic predictions in the case of exchange flow through a contracting channel. Finally, a simulation of circulation driven by spatially non‐uniform surface buoyancy flux in an irregular basin is discussed. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

7.
We propose a new model and a solution method for two‐phase two‐fluid compressible flows. The model involves six equations obtained from conservation principles applied to a one‐dimensional flow of gas and liquid mixture completed by additional closure governing equations. The model is valid for pure fluids as well as for fluid mixtures. The system of partial differential equations with source terms is hyperbolic and has conservative form. Hyperbolicity is obtained using the principles of extended thermodynamics. Features of the model include the existence of real eigenvalues and a complete set of independent eigenvectors. Its numerical solution poses several difficulties. The model possesses a large number of acoustic and convective waves and it is not easy to upwind all of these accurately and simply. In this paper we use relatively modern shock‐capturing methods of a centred‐type such as the total variation diminishing (TVD) slope limiter centre (SLIC) scheme which solve these problems in a simple way and with good accuracy. Several numerical test problems are displayed in order to highlight the efficiency of the study we propose. The scheme provides reliable results, is able to compute strong shock waves and deals with complex equations of state. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

8.
A three‐dimensional numerical model is presented for the simulation of unsteady non‐hydrostatic shallow water flows on unstructured grids using the finite volume method. The free surface variations are modeled by a characteristics‐based scheme, which simulates sub‐critical and super‐critical flows. Three‐dimensional velocity components are considered in a collocated arrangement with a σ‐coordinate system. A special treatment of the pressure term is developed to avoid the water surface oscillations. Convective and diffusive terms are approximated explicitly, and an implicit discretization is used for the pressure term to ensure exact mass conservation. The unstructured grid in the horizontal direction and the σ coordinate in the vertical direction facilitate the use of the model in complicated geometries. Solution of the non‐hydrostatic equations enables the model to simulate short‐period waves and vertically circulating flows. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
Numerical modelling of shallow water flow in two dimensions is presented in this work with the results obtained in dam break tests. Free surface flow in channels can be described mathematically by the shallow‐water system of equations. These equations have been discretized using an approach based on unstructured Delaunay triangles and applied to the simulation of two‐dimensional dam break flows. A cell centred finite volume method based on Roe's approximate Riemann solver across the edges of the cells is presented and the results are compared for first‐ and second‐order accuracy. Special treatment of the friction term has been adopted and will be described. The scheme is capable of handling complex flow domains as shown in the simulation corresponding to the test cases proposed, i.e. that of a dam break wave propagating into a 45° bend channel (UCL) and in a channel with a constriction (LNEC‐IST). Comparisons of experimental and numerical results are shown. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

10.
Current existing main nuclear thermal‐hydraulics (T‐H) system analysis codes, such as RALAP5, TRACE, and CATHARE, play a crucial role in the nuclear engineering field for the design and safety analysis of nuclear reactor systems. However, two‐fluid model used in these T‐H system analysis codes is ill posed, easily leading to numerical oscillations, and the classical first‐order methods for temporal and special discretization are widely employed for numerical simulations, yielding excessive numerical diffusion. Two‐fluid seven‐equation two‐pressure model is of particular interest due to the inherent well‐posed advantage. Moreover, high‐order accuracy schemes have also attracted great attention to overcome the challenge of serious numerical diffusion induced by low‐order time and space schemes for accurately simulating nuclear T‐H problems. In this paper, the semi‐implicit solution algorithm with high‐order accuracy in space and time is developed for this well‐posed two‐fluid model and the robustness and accuracy are verified and assessed against several important two‐phase flow benchmark tests in the nuclear engineering T‐H field, which include two linear advection problems, the oscillation problem of the liquid column, the Ransom water faucet problem, the reversed water faucet problem, and the two‐phase shock tube problem. The following conclusions are achieved. (1) The proposed semi‐implicit solution algorithm is robust in solving two‐phase flows, even for fast transients and discontinuous solutions. (2) High‐order schemes in both time and space could prevent excessive numerical diffusion effectively and the numerical simulation results are more accurate than those of first‐order time and space schemes, which demonstrates the advantage of using high‐order schemes.  相似文献   

11.
Multiphase flow through porous media is a highly nonlinear process that can be solved numerically with the aid of finite elements (FE) in space and finite differences (FD) in time. For an accurate solution much refined FE grids are generally required with the major computational effort consisting of the resolution to the nonlinearity frequently obtained with the classical Picard linearization approach. The efficiency of the repeated solution to the linear systems within each individual time step represents the key to improve the performance of a multiphase flow simulator. The present paper discusses the performance of the projection solvers (GMRES with restart, TFQMR, and BiCGSTAB) for two global schemes based on a different nodal ordering of the unknowns (ORD1 and ORD2) and a scheme (SPLIT) based on the straightforward inversion of the lumped mass matrix which allows for the preliminary elimination and substitution of the unknown saturations. It is shown that SPLIT is between two and three time faster than ORD1 and ORD2, irrespective of the solver used. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
Consideration is given in this paper to the numerical solution of the transient two‐phase flow in rigid pipelines. The governing equations for such flows are two coupled, non‐linear, hyperbolic, partial differential equations with pressure dependent coefficients. The fluid pressure and velocity are considered as two principle dependent variables. The fluid is a homogeneous gas–liquid mixture for which the density is defined by an expression averaging the two‐component densities where a polytropic process of the gaseous phase is admitted. Instead of the void fraction, which varies with the pressure, the gas–fluid mass ratio (or the quality) is assumed to be constant, and is used in the mathematical formulation. The problem has been solved by the method of non‐linear characteristics and the finite difference conservative scheme. To verify their validity, the computed results of the two numerical techniques are compared for different values of the quality, in the case where the liquid compressibility and the pipe wall elasticity are neglected. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

13.
In this paper, a Galerkin weighted residual finite element numerical solution method, with velocity material time derivative discretisation, is applied to solve for a classical fluid mechanics system of partial differential equations modelling two‐dimensional stationary incompressible Newtonian fluid flow. Classical examples of driven cavity laminar flow and laminar flow past a cylinder are presented. Numerical results are compared with data found in the literature. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

14.
Theoretical studies have been made to determine the pressure drops caused by abrupt flow area expansion/contraction in small circular pipes for two‐phase flow of air and water mixtures at room temperature and near atmospheric pressure. Two‐phase computational fluid dynamics (CFD) calculations, using Eulerian–Eulerian model (with the air phase being compressible for pipe contraction case) are employed to calculate the pressure drop across sudden expansion and contraction. The pressure drop is determined by extrapolating the computed pressure profiles upstream and downstream of the expansion/contraction. The larger and smaller tube diameters are 1.6 and 0.84 mm, respectively. Computations have been performed with single‐phase water and air, and two‐phase mixtures in a range of Reynolds number (considering all‐liquid flow) from 1000 to 12 000 and flow quality from 1.2 × 10?3 to 1.6 × 10?2. The numerical results are validated against experimental data from the literature and are found to be in good agreement. The expansion and contraction loss coefficients are found to be different for single‐phase flow of air and water, and they agreed reasonably well with the commonly used theoretical predictions. Based on the numerical results as well as experimental data, correlations are developed for two‐phase flow pressure drops caused by the flow area contraction as well as expansion. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
A two‐dimensional multi‐phase model for immiscible binary fluid flow including moving immersed objects is presented. The fluid motion is described by the incompressible Navier–Stokes equation coupled with a phase‐field model based on van der Waals' free energy density and the Cahn–Hilliard equation. A new phase‐field boundary condition was implemented with minimization of the free energy in a direct way, to specifically improve the physical behavior of the contact line dynamics for moving immersed objects. Numerical stability and execution time were significantly improved by the use of the new boundary condition. Convergence toward the analytical solution was demonstrated for equilibrium contact angle, the Lucas–Washburn theory and Stefan's problem. The proposed model may be used for multi‐phase flow problems with moving boundaries of complex geometry, such as the penetration of fluid into a deformable, porous medium. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
Diffuse interface models for incompressible two‐phase flow with large density ratios are tested on benchmark configurations for a two‐dimensional bubble rising in liquid columns. The benchmark quantities circularity, center of mass, and mean rise velocity are compared with reference solutions from Hysing et al. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
A depth‐averaged two‐dimensional model has been developed in the curvilinear co‐ordinate system for free‐surface flow problems. The non‐linear convective terms of the momentum equations are discretized based on the explicit–finite–analytic method with second‐order accuracy in space and first‐order accuracy in time. The other terms of the momentum equations, as well as the mass conservation equation, are discretized by the finite difference method. The discretized governing equations are solved in turn, and iteration in each time step is adopted to guarantee the numerical convergence. The new model has been applied to various flow situations, even for the cases with the presence of sub‐critical and supercritical flows simultaneously or sequentially. Comparisons between the numerical results and the experimental data show that the proposed model is robust with satisfactory accuracy. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

18.
For two‐phase flow models, upwind schemes are most often difficult do derive, and expensive to use. Centred schemes, on the other hand, are simple, but more dissipative. The recently proposed multi‐stage (MUSTA ) method is aimed at coming close to the accuracy of upwind schemes while retaining the simplicity of centred schemes. So far, the MUSTA approach has been shown to work well for the Euler equations of inviscid, compressible single‐phase flow. In this work, we explore the MUSTA scheme for a more complex system of equations: the drift‐flux model, which describes one‐dimensional two‐phase flow where the motions of the phases are strongly coupled. As the number of stages is increased, the results of the MUSTA scheme approach those of the Roe method. The good results of the MUSTA scheme are dependent on the use of a large‐enough local grid. Hence, the main benefit of the MUSTA scheme is its simplicity, rather than CPU ‐time savings. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

19.
The transient two‐layer thin‐film planar flow is investigated theoretically in this study. The interplay among inertia, viscous and surface/interfacial tension is emphasized. It is found that the film and interface profiles, as well as the flow field, are strongly influenced by the viscosity ratio, velocity and film thickness ratios at inception, and the surface‐to‐interfacial tension ratio. The nonlinear stability of the steady state reveals the formation of a solitary wave after flow inception, which propagates in the form of a convective instability, with the steady state recovered only in the tail (upstream) region of the wave. In the presence of surface/interfacial tension, surface modulation appears, which grows in wavelength and amplitude with position. The flow is found to be particularly stable for higher viscosity of the lower film layer. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
The two‐dimensional shallow water model is a hyperbolic system of equations considered well suited to simulate unsteady phenomena related to some surface wave propagation. The development of numerical schemes to correctly solve that system of equations finds naturally an initial step in two‐dimensional scalar equation, homogeneous or with source terms. We shall first provide a complete formulation of the second‐order finite volume scheme for this equation, paying special attention to the reduction of the method to first order as a particular case. The explicit first and second order in space upwind finite volume schemes are analysed to provide an understanding of the stability constraints, making emphasis in the numerical conservation and in the preservation of the positivity property of the solution when necessary in the presence of source terms. The time step requirements for stability are defined at the cell edges, related with the traditional Courant–Friedrichs–Lewy (CFL) condition. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号