首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In the present work, a sensitive, facile and disposable sensing platform for trace analysis of heavy metal ions was developed at the Bi modified graphene‐poly(sodium 4‐styrenesulfonate) composite film screen printed electrode (GR/PSS/Bi/SPE). The GR/PSS/Bi/SPE improved sensitivity and linearity due to the functionalization of graphene with negatively charged PSS providing more absorbing sites. The detection limit of the GR/PSS/Bi/SPE is found to be 0.042 µg L?1 for Cd2+ and 0.089 µg L?1 for Pb2+ with linear responses of Cd2+ and Pb2+ in the range of 0.5–120 µg L?1. Finally, the practical application was confirmed in real water with satisfactory results.  相似文献   

2.
This work presents a disposable bismuth‐antimony film electrode fabricated on screen‐printed electrode (SPE) substrates for lead(II) determination. This bismuth‐antimony film screen‐printed electrode (Bi‐SbSPE) is simply prepared by simultaneously in situ depositing bismuth(III) and antimony(III) with analytes on the homemade SPE. The Bi‐SbSPE can provide an enhanced electrochemical stripping signal for lead(II) compared to bismuth film screen‐printed electrodes (BiSPE), antimony film screen‐printed electrodes (SbSPE) and bismuth‐antimony film glassy carbon electrodes (Bi‐SbGC). Under optimized conditions, the Bi‐SbSPE exhibits attractive linear responses towards lead(II) with a detection limit of 0.07 µg/L. The Bi‐SbSPE has been demonstrated successfully to detect lead in river water sample.  相似文献   

3.
采用原位镀铋电极的方式,以玻碳电极为工作电极,通过改变Cd2+和Pb2+的比例,考察不同Pb2+和Cd2+浓度条件下,两者同时存在时的相互影响。实验发现,Cd2+和Pb2+同时存在时,存在相互的影响,特别是对于Cd2+的检测,由于Pb2+较正的析出电位,对于Cd2+的析出有一定的辅助作用。考察了Cd2+和Pb2+单独存在时的分析性能,Pb2+沉积时间为60 s时,在1~80μg/L范围内呈线性关系,检出限为0.5μg/L;Cd2+的沉积时间为120 s,在1~25μg/L和30~200μg/L范围内有良好的线性关系,检出限为1.0μg/L。考察了铋膜电极在不同实际水样中对Pb2+和Cd2+的分析,获得了较好的一致性。  相似文献   

4.
Multiwall carbon nanotubes were dispersed in Nafion (MWCNTs‐NA) solution and used in combination with bismuth (MWCNTs‐NA/Bi) for fabricating composite sensors to determine trace Pb(II) and Cd(II) by differential pulse anodic stripping voltammetry (DPASV). The electrochemical properties of the MWCNTs‐NA/Bi composites film modified glassy carbon electrode (GCE) were evaluated. The synergistic effect of MWCNTs and bismuth composite film was obtained for Pb(II) and Cd(II) detection with improved sensitivity and reproducibility. Linear calibration curves ranged from 0.05 to 100 μg/L for Pb(II) and 0.08 to 100 μg/L for Cd(II). The determination limits (S/N=3) were 25 ng/L for Pb and 40 ng/L for Cd, which compared favorably with previously reported methods in the area of electrochemical Pb(II) and Cd(II) detection. The MWCNTs‐NA/Bi composite film electrodes were successfully applied to determine Pb(II) and Cd(II) in real sample, and the results of the present method agreed well with those of atomic absorption spectroscopy.  相似文献   

5.
A new kind of bismuth film modified electrode to sensitively detect trace metal ions based on incorporating highly conductive ionic liquids 1‐butyl‐3‐methyl‐imidazolium hexafluorophosphate (BMIMPF6) in solid matrices at glassy carbon (GC) was investigated. Poly(sodium 4‐styrenesulfonate) (PSS), silica, and Nafion were selected as the solid matrices. The electrochemical properties of the mixed films modified GC were evaluated. The electron transfer rate of Fe(CN)64?/Fe(CN)63? can be effectively improved at the PSS‐BMIMPF6 modified GC. The bismuth modified PSS‐BMIMPF6 composite film electrodes (GC/PSS‐BMIMPF6/BiFEs) displayed high mechanical stability and sensitive stripping voltammetric performances for the determination of trace metal cations. The GC/PSS‐BMIMPF6/BiFE exhibited well linear response to both Cd(II) and Pb(II) over a concentration range from 1.0 to 50 μg L?1. And the detection limits were 0.07 μg L?1 for Cd(II) and 0.09 μg L?1 for Pb(II) based on three times the standard deviation of the baseline with a preconcentration time of 120 s, respectively. Finally, the GC/PSS‐BMIMPF6/BiFEs were successfully applied to the determination of Cd(II) and Pb(II) in real sample, and the results of present method agreed well with those of atomic absorption spectroscopy.  相似文献   

6.
To improve the reproducibility, stability, and sensitivity of bismuth film electrode (BiFE), we studied the performances of a mixed coating of two cation‐exchange polymers, Nafion (NA) and poly(sodium 4‐styrenesulfonate) (PSS), modified glassy carbon BiFE (GC/NA‐PSS/BiFE). The characteristics of GC/NA‐PSS/BiFE were investigated by scanning electron microscopy and cyclic voltammetry. Various parameters were studied in terms of their effect on the anodic stripping voltammetry (ASV) signals. Under optimized conditions, the limits of detection were 71 ng L?1 for Cd(II) and 93 ng L?1 for Pb(II) with a 10 min preconcentration. The results exhibited that GC/NA‐PSS/BiFE can be a reproducible and robust tool for monitor of trace metals by ASV rapidly and environmentally friendly, even in the presence of surface‐active compounds.  相似文献   

7.
A siloxane‐crown ether polyamide copolymer (PDMS‐PA‐DB18C6) was electrochemically investigated for fabrication of lead‐sensitive electrodes for trace analysis in aqueous solutions. The PDMS‐PA‐DB18C6 electrodes were successfully evaluated for anodic stripping voltammetric determination of lead(II) as a promising alternative for the detection of lead at ppb levels. By a judicious choice of the deposition time, electrolyte concentration and pulse amplitude, good analytical performance of the developed sensor could be achieved, with a linear response in the range of 20–700 ppb, when LOD of 3.5 ppb could be attained. This method showed a good degree of selectivity and sensitivity for lead, suitable for the determination of Pb2+ in wastewater sample.  相似文献   

8.
The fabrication and evaluation of a glassy carbon electrode (GCE) modified with ordered mesoporous carbon (OMC), 2‐mercaptoethanesulfonate (MES)‐tethered polyaniline (PANI) and bismuth for simultaneous determination of trace Cd2+ and Pb2+ by differential pulse anodic stripping voltammetry (DPASV) are presented here. The morphology and electrochemical properties of the fabricated electrode were respectively characterized by scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS). Experimental parameters such as PANI disposition, preconcentration potential, preconcentration time and bismuth concentration were optimized. Under optimum conditions, the fabricated electrode exhibited linear calibration curves ranged from 1 to 120 nM for Cd2+ and Pb2+. The limits of detection (LOD) were 0.26 nM for Cd2+ and 0.16 nM for Pb2+ (S/N=3), respectively. Additionally, repeatability, reproducibility, interference and application were also investigated, and the proposed electrode exhibited excellent performance. The proposed method could be extended for the development of other new sensors for heavy metal determination.  相似文献   

9.
《Electroanalysis》2006,18(5):485-492
A novel method for the fabrication of carbon nanotubes/poly(1,2‐diaminobenzene) nanoporous composite based electrode was proposed. By multipulse potentiostatic electropolymerization, the multi‐walled carbon nanotubes (MWNTs) and poly(1,2‐diaminobenzene) were deposited simultaneously on the electrode surface. Compared with the composite prepared by the traditional potentiodynamic method, the composite synthesized by multipulse potentiostatic method has a unique nanoporous structure, exhibits excellent conductivity and better environmental stability. The surface of the resulting electrode was characterized with scanning electron microscopy (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The nanoporous composite film modified glassy carbon electrode was also used successfully for the simultaneously voltammetric determination of trace level of Cd2+ and Cu2+ at first‐time. Under the optimal conditions, the determination limits of 0.25 and 0.33 ppb for Cd2+ and Cu2+ were obtained, respectively. The calibration graphs were linear in the concentration range of 5–100 ppb. The electrode system provides an excellent platform for ultra sensitive electrochemical sensors for chemical and biological sensing.  相似文献   

10.
The well‐known method for the determination of mercury(II), which is based on the anodic stripping voltammetry of mercury(II), has been adapted for applications at the thin film poly(3‐hexylthiophene) polymer electrode. Halide ions have been found to increase the sensitivity of the mercury response and shift it more positive potentials. This behavior is explained by formation of mercuric halide which can be easily deposited and stripped from the polymer electrode surface. The procedure was optimized for mercury determination. For 120 s accumulation time, detection limit of 5 ng mL?1 mercury(II) has been observed. The relative standard deviation is 1.3% at 40 ng mL?1 mercury(II). The performance of the polymer film studied in this work was evaluated in the presence of surfactants and some potential interfering metal ions such as cadmium, lead, copper and nickel.  相似文献   

11.
Screen‐printed electrodes (SPEs) are cheap and disposable. But their application for heavy metal detection is limited due to the low sensitivity and poor selectivity. Here we report the ultrasensitive and simultaneous determination of Zn2+, Cd2+ and Pb2+ on a multiwalled carbon nanotubes and Nafion composite modified SPE with in situ plated bismuth film (MWCNTs/NA/Bi/SPE). The linear curves range from 0.5–100 µg L?1 for Zn2+ and 0.5–80 µg L?1 for Cd2+. Uniquely, the linear curve for Pb2+ ranges from 0.05–100 µg L?1 with a detection limit of 0.01 µg L?1. The practical application was verified in real samples with satisfactory results.  相似文献   

12.
以铋膜电极为工作电极,采用微分脉冲阳极溶出伏安法直接测定食品样品中痕量铅、镉和锌。在富集电位-1.4V,富集时间180s,铋膜质量浓度150μg·L-1的条件下,铋膜电极对铅、镉和锌的氧化溶出具有良好的电化学响应。铅(Ⅱ)、镉(Ⅱ)和锌(Ⅱ)的质量浓度在5.0~40μg·L-1的范围内与其阳极溶出峰电流呈线性关系,铅(Ⅱ)、镉(Ⅱ)和锌(Ⅱ)的检出限(3S/N)分别为0.80,0.65,0.58μg·L-1。对25μg·L-1铅(Ⅱ)、镉(Ⅱ)和锌(Ⅱ)溶液用铋膜电极连续测定15次,相对标准偏差分别为6.2%,5.1%,7.1%。方法应用于食品中痕量重金属的测定,测定结果与石墨炉原子吸收光谱法的测定值相符。  相似文献   

13.
A solid, bismuth (Bi), disk, electrode is used to determine lead (Pb) in natural waters including seawater. The diffusion layer thickness was lowered from 93 to 29 µm by stirring, and to 18 µm by using the vibrated version of the Bi electrode. The Bi electrode does not require removal of dissolved oxygen, which facilitates in situ detection. The electrode was tested for the determination of Pb in coastal seawater samples. The detection limit for Pb was 0.15 nM in acetate buffer and 0.5 nM in seawater using a 2 min deposition time. Cadmium can be determined together with Pb but the sensitivity is about 10×lower. The Bi electrode compares unfavourably to a mercury electrode in terms of sensitivity.  相似文献   

14.
We report the simultaneous electroanalytical determination of Pb2+ and Cd2+ by linear sweep anodic stripping voltammetry (LSASV) using an antimony nanoparticle modified boron doped diamond (Sb‐BDD) electrode. Sb deposition was performed in situ with the analytes, from a solution of 1 mg L?1 SbCl3 in 0.1 M HCl (pH 1). Pb2+ inhibited the detection of Cd2+ during simultaneous additions at the bare BDD electrode, whereas in the presence of antimony, both peaks were readily discernable and quantifiable over the linear range 50–500 μg L?1.  相似文献   

15.
In this article a sensitive differential pulse stripping voltammetry technique on Nafion‐coated bismuth‐film electrode (NCBFE) was studied for the simultaneous determination of zinc, cadmium, and lead ions in blood samples at ultra trace levels. The measurement results were in excellent agreement with those obtained from atomic absorption spectroscopy. Various operational parameters were investigated and discussed in terms of their effect on the measurement signals. Under optimal conditions, calibration curves for the simultaneous determination of zinc, cadmium, and lead ions were achieved, based on three times the standard deviation of the baseline, the limits of detection were 0.09 μg L?1 for Cd(II), 0.13 μg L?1 for Pb(II), and 0.97 μg L?1 for Zn(II) respectively.  相似文献   

16.
《Electroanalysis》2005,17(21):1952-1958
The performance of a poly(1,8‐diaminonaphthalene)‐modified electrode for the determination of the Se(IV) ion in an aqueous medium was investigated with anodic stripping voltammetry without the pretreating of the sample. The experimental parameters for the analysis of Se(IV) were optimized and the characteristics of this polymer‐modified electrode were investigated by using cyclic voltammetry. The Se(IV) ions were chemically deposited onto the surface of the pDAN‐Au electrode in an acidic medium. The detection limit employing the anodic stripping differential pulse voltammetry was 9.0×10?9 M for Se(IV) with 4.4 % of RSD. Satisfactory result for the determination of Se(IV) was acquired employing a certified standard urine reference material, SRM's 2670 (trace element in urine) with 4.1 ppb of SD.  相似文献   

17.
In this work, simultaneous determination of Cu(II), Pb(II) and Zn(II) ions at low concentration levels (ppb) by square wave anodic stripping voltammetry on a Bi(III) film electrode plated in situ at a glassy carbon electrode (GCE) is described. A chemometric approach was used to overcome the overlapping peaks of Cu(II) and Bi(III), the competition of the electrodeposited Cu and Bi for the surface of the GCE and the formation of Cu‐Zn intermetallic compounds. The construction of the multivariate calibration models, based on partial least squares regression, allowed the simultaneous determination of Cu (in the concentration range 8.0 to 20.1 ppb), Pb (2.0 to 30.0 ppb) and Zn (29.7 to 90.4 ppb) with most of the prediction errors obtained in the external validation set for the three models lower than 16, 11 and 26 %, respectively. Finally, this method was used for the determination of these trace metal ions in surface river water samples with satisfactory results [errors below 10, 5 and 32 % for Cu(II), Pb(II) and Zn(II), respectively].  相似文献   

18.
A method using commercially available sputtered bismuth screen‐printed electrodes (BispSPE), as substitute to mercury electrodes, for the determination of trace Pb(II) and Cd(II) ions in drinking well water samples collected in a contaminated area in The Republic of El Salvador by means of differential pulse anodic stripping voltammetry (DPASV) has been proposed. The comparable detection and quantification limits obtained for both BispSPE and hanging mercury drop electrode (HMDE), together with the similar results with a high reproducibility obtained in these water samples analyses recommend the applicability of BispSPE for the determination of low level of metal concentrations in natural samples.  相似文献   

19.
A nanocomposite consisting of multiwalled carbon nanotubes wrapped with hydroxyapatite (HA/MWCNTs) was used in the construction of a new composite paste electrode using an ionic liquid as the binder. The stable surface in aqueous solutions as well as the high sorptive behaviors towards heavy metal ions and the favorable charge transfer make the electrode highly efficient especially for stripping or adsorptive analysis. The analysis of Pb2+ as a model of heavy metal ions has been performed. Good sensitivity, detection limit, selectivity and reproducibility were obtained for the suggested sensor. The linear range of the electrode response covered four orders of magnitude (1 nM–10 µM), in two linear ranges. The obtained detection limit for Pb2+ was 2×10?11 M.  相似文献   

20.
The bismuth film is a great promise as a suitable material to replace the mercury electrodes due to its low toxicity and good cathodic potential range. This work studies the influence of the electrodeposition conditions in the morphology and electroanalytical performance of the bismuth film electrodeposited onto copper electrode. The bismuth films were obtained in nitric or hydrochloric acid solutions with and without the presence of sodium citrate. The films were characterized by field emission scanning electron microscopy (FE‐SEM) and scanning electron microscopy with energy dispersive X‐ray spectrometry (SEM‐EDX). The microscopic analysis of the bismuth film obtained in HCl solution with sodium citrate (BIFE‐Cit) showed more homogeneous structure with higher content of bismuth than the film obtained in HCl only (BiFE‐HCl). The BiFE‐Cit exhibited a better analytical performance for lead with good adherence to the copper substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号