首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An upstream flux‐splitting finite‐volume (UFF) scheme is proposed for the solutions of the 2D shallow water equations. In the framework of the finite‐volume method, the artificially upstream flux vector splitting method is employed to establish the numerical flux function for the local Riemann problem. Based on this algorithm, an UFF scheme without Jacobian matrix operation is developed. The proposed scheme satisfying entropy condition is extended to be second‐order‐accurate using the MUSCL approach. The proposed UFF scheme and its second‐order extension are verified through the simulations of four shallow water problems, including the 1D idealized dam breaking, the oblique hydraulic jump, the circular dam breaking, and the dam‐break experiment with 45° bend channel. Meanwhile, the numerical performance of the UFF scheme is compared with those of three well‐known upwind schemes, namely the Osher, Roe, and HLL schemes. It is demonstrated that the proposed scheme performs remarkably well for shallow water flows. The simulated results also show that the UFF scheme has superior overall numerical performances among the schemes tested. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
A finite‐volume multi‐stage (FMUSTA) scheme is proposed for simulating the free‐surface shallow‐water flows with the hydraulic shocks. On the basis of the multi‐stage (MUSTA) method, the original Riemann problem is transformed to an independent MUSTA mesh. The local Lax–Friedrichs scheme is then adopted for solving the solution of the Riemann problem at the cell interface on the MUSTA mesh. The resulting first‐order monotonic FMUSTA scheme, which does not require the use of the eigenstructure and the special treatment of entropy fixes, has the generality as well as simplicity. In order to achieve the high‐resolution property, the monotonic upstream schemes for conservation laws (MUSCL) method are used. For modeling shallow‐water flows with source terms, the surface gradient method (SGM) is adopted. The proposed schemes are verified using the simulations of six shallow‐water problems, including the 1D idealized dam breaking, the steady transcritical flow over a hump, the 2D oblique hydraulic jump, the circular dam breaking and two dam‐break experiments. The simulated results by the proposed schemes are in satisfactory agreement with the exact solutions and experimental data. It is demonstrated that the proposed FMUSTA schemes have superior overall numerical accuracy among the schemes tested such as the commonly adopted Roe and HLL schemes. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
This paper extends an adaptive moving mesh method to multi‐dimensional shallow water equations (SWE) with source terms. The algorithm is composed of two independent parts: the SWEs evolution and the mesh redistribution. The first part is a high‐resolution kinetic flux‐vector splitting (KFVS) method combined with the surface gradient method for initial data reconstruction, and the second part is based on an iteration procedure. In each iteration, meshes are first redistributed by a variational principle and then the underlying numerical solutions are updated by a conservative‐interpolation formula on the resulting new mesh. Several test problems in one‐ and two‐dimensions with a general geometry are computed using the proposed moving mesh algorithm. The computations demonstrate that the algorithm is efficient for solving problems with bore waves and their interactions. The solutions with higher resolution can be obtained by using a KFVS scheme for the SWEs with a much smaller number of grid points than the uniform mesh approach, although we do not treat technically the bed slope source terms in order to balance the source terms and flux gradients. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

4.
This paper reports four different approaches to discretize the source terms for the simulation of one‐dimensional open‐channel flows with rapidly varied bottom topography using TVD‐MacCormack scheme. Compared with other high‐resolution shock‐capturing schemes, MacCormack‐type predictor–corrector method is easy to implement and does not present any additional difficulty in dealing with the source terms. To avoid the generation of artificial numerical waves, if the bottom topography shows strong variation, special treatment of the source terms is still required to eliminate or reduce the artificial numerical error caused by adding TVD corrections to the method. The computed results demonstrated that the improved surface gradient method is more suitable for simulating open‐channel flow with highly irregular bed topography by using the surface gradient instead of the depth gradient for TVD corrections and considering the balancing of the source terms and the flux gradients. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

5.
Discontinuous Galerkin (DG) finite element methods have salient features that are mainly highlighted by their locality, their easiness in balancing the flux and source term gradients and their component‐wise structure. In the light of this, this paper aims to provide insights into the well‐balancing property of a second‐order Runge–Kutta Discontinuous Galerkin (RKDG2) method. For this purpose, a Godunov‐type RKDG2 method is presented for solving the shallow water equations. The scheme is based on local DG linear approximations and does not entail any special treatment of the source terms in order to achieve well‐balanced numerical results. The performance of the present RKDG2 scheme in reproducing conserved solutions for both free surface and discharge over strongly irregular topography is demonstrated by applying to several hydraulic benchmarks. Meanwhile, the effects of different slope limiting procedures on the well‐balancing property are investigated and discussed. This work may provide useful guidelines for developing a well‐balanced RKDG2 numerical scheme for shallow water flow simulation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
In this work, we present a total variation diminishing (TVD) scheme in the zero relaxation limit for nonlinear hyperbolic conservation law using flux limiters within the framework of a relaxation system that converts a nonlinear conservation law into a system of linear convection equations with nonlinear source terms. We construct a numerical flux for space discretization of the obtained relaxation system and modify the definition of the smoothness parameter depending on the direction of the flow so that the scheme obeys the physical property of hyperbolicity. The advantages of the proposed scheme are that it can give second‐order accuracy everywhere without introducing oscillations for 1‐D problems (at least with) smooth initial condition. Also, the proposed scheme is more efficient as it works for any non‐zero constant value of the flux limiter ? ? [0, 1], where other TVD schemes fail. The resulting scheme is shown to be TVD in the zero relaxation limit for 1‐D scalar equations. Bound for the limiter function is obtained. Numerical results support the theoretical results. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
A new numerical scheme, namely space–time conservation element and solution element (CE/SE) method, has been used for the solution of the two‐dimensional (2D) dam‐break problem. Distinguishing from the well‐established traditional numerical methods (such as characteristics, finite difference, finite element, and finite‐volume methods), the CE/SE scheme has many non‐traditional features in both concept and methodology: space and time are treated in a unified way, which is the most important characteristic for the CE/SE method; the CEs and SEs are introduced, both local and global flux conservations in space and time rather than space only are enforced; an explicit scheme with a stagger grid is adopted. Furthermore, this scheme is robust and easy to implement. In this paper, an improved CE/SE scheme is extended to solve the 2D shallow water equations with the source terms, which usually plays a critical role in dam‐break flows. To demonstrate the accuracy, robustness and efficiency of the improved CE/SE method, both 1D and 2D dam‐break problems are simulated numerically, and the results are consistent with either the analytical solutions or experimental results. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
The effectiveness and usefulness of further enhancing the shock resolution of a second‐order accurate scheme for open‐channel flows by using an adaptive grid is investigated. The flux‐difference‐splitting (FDS) scheme based on the Lax–Wendroff numerical flux is implemented on a fixed as well as on a self‐adjusting grid for this purpose. The grid‐adjusting procedure, developed by Harten and Hyman, adjusts the grid by averaging the local characteristic velocities with respect to the signal amplitude in such a way that a shock always lies on a mesh point. This enables a scheme capable of perfectly resolving a stationary shock to capture a shock that moves from mesh point to mesh point. The Roe's approximate Jacobian is used for conservation and consistency, while theoretically sound treatment for satisfying entropy inequality conditions ensures physically realistic solutions. Details about inclusion of source terms, often left out of analyses for the homogeneous part of governing equations, are also explained. The numerical results for some exacting problems are compared with analytical as well as experimental results for examining improvements in resolution of discontinuities by the adaptive grid. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

9.
The lattice Boltzmann method (LBM) has established itself as an alternative approach to solve the fluid flow equations. In this work we combine LBM with the conventional finite volume method (FVM), and propose a non‐iterative hybrid method for the simulation of compressible flows. LBM is used to calculate the inter‐cell face fluxes and FVM is used to calculate the node parameters. The hybrid method is benchmarked for several one‐dimensional and two‐dimensional test cases. The results obtained by the hybrid method show a steeper and more accurate shock profile as compared with the results obtained by the widely used Godunov scheme or by a representative flux vector splitting scheme. Additional features of the proposed scheme are that it can be implemented on a non‐uniform grid, study of multi‐fluid problems is possible, and it is easily extendable to multi‐dimensions. These features have been demonstrated in this work. The proposed method is therefore robust and can possibly be applied to a variety of compressible flow situations. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
A high‐order alternating direction implicit (ADI) method for solving the unsteady convection‐dominated diffusion equation is developed. The fourth‐order Padé scheme is used for the discretization of the convection terms, while the second‐order Padé scheme is used for the diffusion terms. The Crank–Nicolson scheme and ADI factorization are applied for time integration. After ADI factorization, the two‐dimensional problem becomes a sequence of one‐dimensional problems. The solution procedure consists of multiple use of a one‐dimensional tridiagonal matrix algorithm that produces a computationally cost‐effective solver. Von Neumann stability analysis is performed to show that the method is unconditionally stable. An unsteady two‐dimensional problem concerning convection‐dominated propagation of a Gaussian pulse is studied to test its numerical accuracy and compare it to other high‐order ADI methods. The results show that the overall numerical accuracy can reach third or fourth order for the convection‐dominated diffusion equation depending on the magnitude of diffusivity, while the computational cost is much lower than other high‐order numerical methods. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
Finite element analysis of fluid flow with moving free surface has been performed in 2‐D and 3‐D. The new VOF‐based numerical algorithm that has been proposed by the present authors (Int. J. Numer. Meth. Fluids, submitted) was applied to several 2‐D and 3‐D free surface flow problems. The proposed free surface tracking scheme is based on two numerical tools; the orientation vector to represent the free surface orientation in each cell and the baby‐cell to determine the fluid volume flux at each cell boundary. The proposed numerical algorithm has been applied to 2‐D and 3‐D cavity filling and sloshing problems in order to demonstrate the versatility and effectiveness of the scheme. The proposed numerical algorithm resolved successfully the free surfaces interacting with each other. The simulated results demonstrated applicability of the proposed numerical algorithm to the practical problems of large free surface motion. It has been also demonstrated that the proposed free surface tracking scheme can be easily implemented in any irregular non‐uniform grid systems and can be extended to 3‐D free surface flow problems without additional efforts. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

12.
A robust, well‐balanced, unstructured, Godunov‐type finite volume model has been developed in order to simulate two‐dimensional dam‐break floods over complex topography with wetting and drying. The model is based on the nonlinear shallow water equations in hyperbolic conservation form. The inviscid fluxes are calculated using the HLLC approximate Riemann solver and a second‐order spatial accuracy is achieved by implementing the MUSCL reconstruction technique. To prevent numerical oscillations near shocks, slope‐limiting techniques are used for controlling the total variation of the reconstructed field. The model utilizes an explicit two‐stage Runge–Kutta method for time stepping, whereas implicit treatments for friction source terms. The novelties of the model include the flux correction terms and the water depth reconstruction method both for partially and fully submerged cells, and the wet/dry front treatments. The proposed flux correction terms combined with the water depth reconstruction method are necessary to balance the bed slope terms and flux gradient in the hydrostatical steady flow condition. Especially, this well‐balanced property is also preserved in partially submerged cells. It is found that the developed wet/dry front treatments and implicit scheme for friction source terms are stable. The model is tested against benchmark problems, laboratory experimental data, and realistic application related to dam‐break flood wave propagation over arbitrary topography. Numerical results show that the model performs satisfactorily with respect to its effectiveness and robustness and thus has bright application prospects. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
A numerical method is presented for the analysis of interactions of inviscid and compressible flows with arbitrarily shaped stationary or moving rigid solids. The fluid equations are solved on a fixed rectangular Cartesian grid by using a higher‐order finite difference method based on the fifth‐order WENO scheme. A constrained moving least‐squares sharp interface method is proposed to enforce the Neumann‐type boundary conditions on the fluid‐solid interface by using a penalty term, while the Dirichlet boundary conditions are directly enforced. The solution of the fluid flow and the solid motion equations is advanced in time by staggerly using, respectively, the third‐order Runge‐Kutta and the implicit Newmark integration schemes. The stability and the robustness of the proposed method have been demonstrated by analyzing 5 challenging problems. For these problems, the numerical results have been found to agree well with their analytical and numerical solutions available in the literature. Effects of the support domain size and values assigned to the penalty parameter on the stability and the accuracy of the present method are also discussed.  相似文献   

14.
A two‐step conservative level set method is proposed in this study to simulate the gas/water two‐phase flow. For the sake of accuracy, the spatial derivative terms in the equations of motion for an incompressible fluid flow are approximated by the coupled compact scheme. For accurately predicting the modified level set function, the dispersion‐relation‐preserving advection scheme is developed to preserve the theoretical dispersion relation for the first‐order derivative terms shown in the pure advection equation cast in conservative form. For the purpose of retaining its long‐time accurate Casimir functionals and Hamiltonian in the transport equation for the level set function, the time derivative term is discretized by the sixth‐order accurate symplectic Runge–Kutta scheme. To resolve contact discontinuity oscillations near interface, nonlinear compression flux term and artificial damping term are properly added to the second‐step equation of the modified level set method. For the verification of the proposed dispersion‐relation‐preserving scheme applied in non‐staggered grids for solving the incompressible flow equations, three benchmark problems have been chosen in this study. The conservative level set method with area‐preserving property proposed for capturing the interface in incompressible fluid flows is also verified by solving the dam‐break, Rayleigh–Taylor instability, bubble rising in water, and droplet falling in water problems. Good agreements with the referenced solutions are demonstrated in all the investigated problems. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
In this paper, an original second‐order upwind scheme for convection terms is described and implemented in the context of a Control‐Volume Finite‐Element Method (CVFEM). The proposed scheme is a second‐order extension of the first‐order MAss‐Weighted upwind (MAW) scheme proposed by Saabas and Baliga (Numer. Heat Transfer 1994; 26B :381–407). The proposed second‐order scheme inherits the well‐known stability characteristics of the MAW scheme, but exhibits less artificial viscosity and ensures much higher accuracy. Consequently, and in contrast with nearly all second‐order upwind schemes available in the literature, the proposed second‐order MAW scheme does not need limiters. Some test cases including two pure convection problems, the driven cavity and steady and unsteady flows over a circular cylinder, have been undertaken successfully to validate the new scheme. The verification tests show that the proposed scheme exhibits a low level of artificial viscosity in the pure convection problems; exhibits second‐order accuracy for the driven cavity; gives accurate reattachment lengths for low‐Reynolds steady flow over a circular cylinder; and gives constant‐amplitude vortex shedding for the case of high‐Reynolds unsteady flow over a circular cylinder. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
A vertex‐centred finite‐volume/finite‐element method (FV/FEM) is developed for solving 2‐D shallow water equations (SWEs) with source terms written in a surface elevation splitting form, which balances the flux gradients and source terms. The method is implemented on unstructured grids and the numerical scheme is based on a second‐order MUSCL‐like upwind Godunov FV discretization for inviscid fluxes and a classical Galerkin FE discretization for the viscous gradients and source terms. The main advantages are: (1) the discretization of SWE written in surface elevation splitting form satisfies the exact conservation property (??‐Property) naturally; (2) the simple centred‐type discretization can be used for the source terms; (3) the method is suitable for both steady and unsteady shallow water problems; and (4) complex topography can be handled based on unstructured grids. The accuracy of the method was verified for both steady and unsteady problems, including discontinuous cases. The results indicate that the new method is accurate, simple, and robust. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
The paper presents a Discontinuous Galerkin γ‐BGK (γ‐DGBGK) method for compressible multicomponent flow simulations by coupling the discontinuous Galerkin method with a γ‐BGK scheme based on WENO limiters. In this γ‐DGBGK method, the construction of the flux in the DG method is based on the kinetic scheme which not only couples the convective and dissipative terms together, but also includes both discontinuous and continuous terms in the flux formulation at cell interfaces. WENO limiters are used to obtain uniform high‐order accuracy and sharp non‐oscillatory shock transition, and time accuracy obtained by integration for the flux function at the cell interface. Numerical examples in one and two space dimensions are presented to illustrate the robust and accuracy of the present scheme. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
Third‐order and fifth‐order upwind compact finite difference schemes based on flux‐difference splitting are proposed for solving the incompressible Navier–Stokes equations in conjunction with the artificial compressibility (AC) method. Since the governing equations in the AC method are hyperbolic, flux‐difference splitting (FDS) originally developed for the compressible Euler equations can be used. In the present upwind compact schemes, the split derivatives for the convective terms at grid points are linked to the differences of split fluxes between neighboring grid points, and these differences are computed by using FDS. The viscous terms are approximated with a sixth‐order central compact scheme. Comparisons with 2D benchmark solutions demonstrate that the present compact schemes are simple, efficient, and high‐order accurate. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
The aim of this work is to develop a well‐balanced finite‐volume method for the accurate numerical solution of the equations governing suspended sediment and bed load transport in two‐dimensional shallow‐water flows. The modelling system consists of three coupled model components: (i) the shallow‐water equations for the hydrodynamical model; (ii) a transport equation for the dispersion of suspended sediments; and (iii) an Exner equation for the morphodynamics. These coupled models form a hyperbolic system of conservation laws with source terms. The proposed finite‐volume method consists of a predictor stage for the discretization of gradient terms and a corrector stage for the treatment of source terms. The gradient fluxes are discretized using a modified Roe's scheme using the sign of the Jacobian matrix in the coupled system. A well‐balanced discretization is used for the treatment of source terms. In this paper, we also employ an adaptive procedure in the finite‐volume method by monitoring the concentration of suspended sediments in the computational domain during its transport process. The method uses unstructured meshes and incorporates upwinded numerical fluxes and slope limiters to provide sharp resolution of steep sediment concentrations and bed load gradients that may form in the approximate solutions. Details are given on the implementation of the method, and numerical results are presented for two idealized test cases, which demonstrate the accuracy and robustness of the method and its applicability in predicting dam‐break flows over erodible sediment beds. The method is also applied to a sediment transport problem in the Nador lagoon.Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
A new class of positivity‐preserving, flux‐limited finite‐difference and Petrov–Galerkin (PG) finite‐element methods are devised for reactive transport problems.The methods are similar to classical TVD flux‐limited schemes with the main difference being that the flux‐limiter constraint is designed to preserve positivity for problems involving diffusion and reaction. In the finite‐element formulation, we also consider the effect of numerical quadrature in the lumped and consistent mass matrix forms on the positivity‐preserving property. Analysis of the latter scheme shows that positivity‐preserving solutions of the resulting difference equations can only be guaranteed if the flux‐limited scheme is both implicit and satisfies an additional lower‐bound condition on time‐step size. We show that this condition also applies to standard Galerkin linear finite‐element approximations to the linear diffusion equation. Numerical experiments are provided to demonstrate the behavior of the methods and confirm the theoretical conditions on time‐step size, mesh spacing, and flux limiting for transport problems with and without nonlinear reaction. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号