首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
A method for performing implicit-solvent molecular dynamics simulations at constant pH was applied to a pentapeptide acetyl-Ala-Asp-Ala-Lys-Ala-amide at pH 4. As a reference, molecular dynamics simulations were done for the same peptide with two variants of its fixed protonation patterns expected to dominate at pH 4, i.e., with a protonated and a deprotonated side chain of the Asp residue and the protonated Lys residue in both cases. The dynamic trajectories of the peptide were used to discuss the problem of the significance of the solute-solvent proton exchange phenomena for the dynamics and structural distributions of the polypeptide chain. The Asp-Lys distance was used as a probe of the overall molecular structure of the investigated pentapeptide. To characterize the dynamics, distributions of the "waiting" times for a transition from a "short" distance conformation to a "long" distance conformation were constructed, based on the generated molecular dynamics trajectories. We show that the relaxation time for the transitions, derived from the constant-pH simulations, is very close to the relaxation time characterizing a permanently protonated molecule, although the average protonation probability of the short-distance conformation is close to zero. However, the distribution of the Asp-Lys distances obtained from constant-pH simulations cannot be reproduced as a linear combination of the distributions resulting from the simulations with fixed protonation states.  相似文献   

2.
DNA.RNA hybrid duplexes are biologically important molecules and are shown to have potential therapeutic properties. To investigate the relationship between structures, energetics, solvation and RNase H activity of hybrid duplexes in comparison with pure DNA and RNA duplexes, a molecular dynamics study using the CHARMM27 force field was undertaken. The structural properties of all four nucleic acids considered are in very good agreement with the experimental data. The backbone dihedral angles and the puckering of the (deoxy)ribose indicate that the purine rich strands retain their A-/B-like properties but the pyrimidine rich DNA strand undergoes A-B conformational transitions. The minor groove widths of the hybrid structures are narrower than those in the RNA duplex, a requirement for RNase H binding. In addition, sampling of noncanonical phosphodiester backbone dihedrals by the DNA strands, differential solvation properties and helical properties, most notably rise, are suggested to contribute to hybrids being RNase H substrates. Differential RNase H activity toward hybrids containing purine versus pyrimidine rich RNA strands is suggested to be due to sampling of values of the phosphodiester backbone dihedrals in the DNA strands. Notably, the present results indicate that hybrids have decreased flexibility as compared to RNA, in contrast to previous reports.  相似文献   

3.
Thermophoresis in liquids is studied by molecular dynamics simulation (MD). A theory is developed that divides the problem in the way consistent with the characteristic scales. MD is then conducted to obtain the solution of each problem, which is to be all combined for macroscopic predictions. It is shown that when the temperature gradient is applied to the nonconducting liquid bath that contains neutral particles, there occurs a pressure gradient tangential to the particle surface at the particle-liquid interface. This may induce the flow in the interfacial region and eventually the particle to move. This applies to the material system that interacts through van der Waals forces and may be a general source of the thermophoresis phenomenon in liquids. The particle velocity is linearly proportional to the temperature gradient. And, in a large part of the given temperature range, the particle motion is in the direction toward the cold end and decreases with respect to the temperature. It is also shown that the particle velocity decreases or even reverses its sign in the lowest limit of the temperature range or with a particle of relatively weak molecular interactions with the liquid. The characteristics of the phenomenon are analyzed in molecular details.  相似文献   

4.
5.
Molecular dynamics simulations (90 ns) of different DNA complexes attached to a functionalized substrate in solution were performed in order to clarify the behavior of mismatched DNA sequences captured by a tethered DNA probe (biochip). Examination of the trajectories revealed that the substrate influence and a series of cooperative events, including recognition, reorientation and reorganization of the bases, could induce the formation of stable duplexes having non-canonical arrangements. Major adjustment of the structures was observed when the mutated base was located in the end region of the chain close to the surface.  相似文献   

6.
The effective enrichment and identification of lowly concentrated polychlorinated biphenyls (PCBs) in the environment is attracting much research attention due to human health concerns raised from their emissions. Cyclodextrins (CDs) are known to be capable to form inclusion complexes with a variety of organic molecules. The purpose of this study is to provide theoretical evidences whether CDs can form energetically stable inclusion complexes with PCBs through a host–guest interaction, and if so, whether infrared and Raman techniques are suitable for the detection of CD-modified PCBs. Focusing on a representative PCB molecule, 3,3′,4,4′,5-pentachlorobiphenyl (PCB126), we studied its molecular inclusion by β-CD (BCD) by performing molecular dynamics simulations and density functional theory calculations. Calculated results show that PCB126 and BCD preferentially form the stable 1:1 inclusion complex. The calculated IR spectra of the 1:1 inclusion complexes mainly present the spectra features of BCD and give only a slight indication for bands of the guest molecule. In contrast, the characteristic vibration modes of the guest molecule are remarkably prominent in the Raman spectra of the inclusion complexes. Based on the present results, we propose that BCD can potentially serve as a candidate for including PCB126 to form the stable 1:1 host–guest complex, and that Raman spectroscopy technology is expected to be suitable for the identification of the CD-modified PCBs, whereas IR spectroscopy is not feasible for such an application.  相似文献   

7.
The dynamic structure and potential energy surface of adenine...thymine and guanine...cytosine base pairs and their methylated analogues interacting with a small number (from 1 to 16 molecules) of organic solvents (methanol, dimethylsulfoxide, and chloroform) were investigated by various theoretical approaches starting from simple empirical methods employing the Cornell et al. force field to highly accurate ab initio quantum chemical calculations (MP2 and particularly CCSD(T) methods). After the simple molecular dynamics simulation, the molecular dynamics in combination with quenching technique was also used. The molecular dynamics simulations presented here have confirmed previous experimental and theoretical results from the bulk solvents showing that, whereas in chloroform the base pairs create hydrogen-bonded structures, in methanol, stacked structures are preferred. While methanol (like water) can stabilize the stacked structures of the base pairs by a higher number of hydrogen bonds than is possible in hydrogen-bonded pairs, the chloroform molecule lacks such a property, and the hydrogen-bonded structures are preferred in this solvent. The large volume of the dimethylsulfoxide molecule is an obstacle for the creation of very stable hydrogen-bonded and stacked systems, and a preference for T-shaped structures, especially for complexes of methylated adenine...thymine base pairs, was observed. These results provide clear evidence that the preference of either the stacked or the hydrogen-bonded structures of the base pairs in the solvent is not determined only by bulk properties or the solvent polarity but rather by specific interactions of the base pair with a small number of the solvent molecules. These conclusions obtained at the empirical level were verified also by high-level ab initio correlated calculations.  相似文献   

8.
 In order to understand the structure of DNAs and their interactions when on microarray surfaces, we performed the first all-atom molecular dynamics simulation of DNA tethered to a surface. On the surface, the binding of the DNA was enhanced, and its average equilibrium conformation was the B form. The DNA duplex spontaneously tilted towards its nearest neighbor and settled in a leaning position with a interaxial distance of 2.2 nm. This close packing of the DNAs, which affects both in situ synthesis and deposition of probes on microarray surfaces, can thus be explained by salted-induced colloidlike DNA–DNA attractions. Received: 30 November 2000 / Accepted: 7 February 2001 / Published online: 22 May 2001  相似文献   

9.
Trans-hydrogen-bond deuterium isotope effects of Watson-Crick A:U and A:T base pairs of 10 homologous RNA and DNA duplexes are compared. The isotope effect at 13C2 of adenosine residues due to deuterium/protium substitution at the imino H3 site, 2hDelta13C2, is larger in RNA than in DNA. The virtually consistent larger isotope effects in RNA suggest that the N1...N3 hydrogen bonds of A:U base pairs of RNA are stronger than those of the A:T base pairs of DNA.  相似文献   

10.
Recent measurements of trans-hydrogen bond deuterium isotope effects (DIEs) on 13C chemical shifts in nucleic acids (Vakonakis, I.; LiWang, A. C. J. Biomol. NMR 2004, 29, 65; J. Am. Chem. Soc. 2004, 126, 5688) have led to intriguing results: (i) the DIEs of A:T pairs in DNA are about 5 ppb smaller than those of A:U in RNA and (ii) A:T DIEs vary by as much as 13 ppb among the oligonucleotides. The first observation suggests that inter-base H-bonds in RNA may be stronger than those in DNA, while the second indicates that the conformation of the base pair modulates the transmission of the isotope effect across the hydrogen bond. In an effort at providing a rationale--so far unknown--for the observed DIEs in nucleic acids, density functional theory and hybrid Car-Parrinello/molecular mechanical calculations of DIEs on nucleosides and nucleotides in the gas phase and in aqueous solution have been performed. The calculations suggest that (i) the DIE in an isolated A:T base pair differs from that in an A:U base pair because of the changes in the magnetic properties caused by the replacement of a methyl group on passing from U to T, (ii) the DIEs depend crucially on the conformation of the base pairs, and (iii) the DIEs are strongly affected by magnetic and electrostatic interactions with the surrounding environment.  相似文献   

11.
We have examined the structure and dynamics of sodium dodecyl sulfate (SDS) and dodecane (C12) molecular aggregates at varying surface coverages on the basal plane of graphite via classical molecular dynamics simulations. Our results suggest that graphite-hydrocarbon chain interactions favor specific molecular orientations at the single-molecule level via alignment of the tail along the crystallographic directions. This orientational bias is reduced greatly upon increasing the surface coverage for both molecules due to intermolecular interactions, leading to very weak bias at intermediate surface coverages. Interestingly, for complete monolayers, we find a re-emergent orientational bias. Furthermore, by comparing the SDS behavior with C12, we demonstrate that the charged head group plays a key role in the aggregate structures: SDS molecules display a tendency to form linear file-like aggregates while C12 forms tightly bound planar ones. The observed orientational bias for SDS molecules is in agreement with experimental observations of hemimicelle orientation and provides support for the belief that an initial oriented layer governs the orientation of hemimicellar aggregates.  相似文献   

12.
Nuclear magnetic resonance (NMR) shielding tensors for the oxygen and hydrogen nuclei, as well as nuclear quadrupole coupling tensors for the oxygen and deuterium nuclei of water in the liquid and gaseous state, are calculated using Hartree-Fock and density functional theory methods, for snapshots sampled from Car-Parrinello molecular dynamics trajectories. Clusters representing local liquid structures and instantaneous configurations of a single molecule representing low-density gas are fed into a quantum chemical program for the calculation of the NMR tensors. The average isotropic and anisotropic tensorial properties of 400 samples in both states, averaged using a common Eckart coordinate frame, are calculated from the data. We report results for the gas-to-liquid chemical shifts of (17)O and (1)H nuclei, as well as the corresponding change in the nuclear quadrupole couplings of (17)O and (2)H. Full thermally averaged shielding and quadrupole coupling tensors are reported for the gaseous and liquid-state water, for the first time in the case of liquid. Electron correlation effects, the difference of classical vs quantum mechanical rovibrational averaging, and different methods of averaging anisotropic properties are discussed.  相似文献   

13.
From an experimental perspective, there has been disagreement among researchers on whether ethane would display single-file or normal diffusive behavior in the channels of AlPO(4)-5. Pulsed field gradient nuclear magnetic resonance measurements implied single-file diffusion, while quasielastic neutron scattering showed normal diffusion. In this paper we present the results of extensive classical molecular dynamics simulations of the diffusion of ethane molecules adsorbed in AlPO(4)-5. Our aim is to provide microscopic details of the static and dynamic properties of the adsorbed molecules in order to verify whether the conditions for the single-file regime can be achieved in a nondefective AlPO(4)-5 crystal structure.  相似文献   

14.
The static and dynamic properties of short polymer chains in disordered materials are studied using discontinuous molecular dynamics simulations. The polymers are modeled as chains of hard spheres and the matrix is a collection of fixed hard spheres. The simulations show that the chain size is a nonmonotonic function of the matrix concentration for all polymer concentrations. The dependence of polymer diffusion D on the degree of polymerization N becomes stronger as the matrix concentration is increased. At high matrix concentrations we observe a decoupling between translational and rotational diffusion, i.e., the rotational relaxation time becomes very large but the translational diffusion is not affected significantly. We attribute this to the trapping of a small number of polymers. Under these conditions the polymer chains diffuse via a hopping mechanism.  相似文献   

15.
The equilibrium probability distribution of N methane molecules adsorbed in the interior of n alpha cages of the ZK4 zeolite, the all-silica analogue of zeolite A, is modeled by a modified hypergeometric distribution where the effects of mutual exclusion between particles are extracted from long molecular dynamics simulations. The trajectories are then analyzed in terms of time-correlation functions for the fluctuations in the occupation number of the alpha cages. The analysis digs out the correlations induced by the spatial distribution of the adsorbed molecules coupled with a migration mechanism where a molecule can pass from one alpha cage to another, one-by-one. These correlations lead to cooperative motion, which manifests itself as a nonexponential decay of the correlators. Our results suggest ways of developing improved lattice approaches that may be useful for studying diffusion in much larger systems and for a much longer observation time.  相似文献   

16.
The unusual mixing behavior of polyisobutylene (PIB) with head-to-head (hhPP) and head-to-tail polypropylene (PP) is studied using large-scale molecular dynamics (MD). The heats of mixing and Flory chi parameters were computed from MD simulations of both blends using a united atom model. The chi parameters from the simulations were estimated from the structure factors using the random phase approximation in analogy with neutron scattering (SANS) experiments. MD simulations for syndiotactic hhPP/PIB predicted a lower critical solution temperature with a chi parameter in very good agreement with SANS experiments on the atactic hhPP/PIB blend. MD simulations also predicted that the isotactic PP/PIB blend was immiscible at high molecular weight in qualitative agreement with cloud point measurements on atactic PP/PIB.  相似文献   

17.
The thermal degradation of a graphene-like two-dimensional honeycomb membrane with bonds undergoing temperature-induced scission is studied by means of Molecular Dynamics simulation using Langevin thermostat. We demonstrate that at lower temperature the probability distribution of breaking bonds is highly peaked at the rim of the membrane sheet whereas at higher temperature bonds break at random everywhere in the hexagonal flake. The mean breakage time τ is found to decrease with the total number of network nodes N by a power law τ ∝ N(-0.5) and reveals an Arrhenian dependence on temperature T. Scission times are themselves exponentially distributed. The fragmentation kinetics of the average number of clusters can be described by first-order chemical reactions between network nodes n(i) of different coordination. The distribution of fragments sizes evolves with time elapsed from initially a δ-function through a bimodal one into a single-peaked again at late times. Our simulation results are complemented by a set of 1st-order kinetic differential equations for n(i) which can be solved exactly and compared to data derived from the computer experiment, providing deeper insight into the thermolysis mechanism.  相似文献   

18.
The unbinding process of E2020 ((R,S)-1-benzyl-4-[(5,6-dimethoxy-1-indanon)-2-yl]-methylpiperidine) leaving from the long active site gorge of Torpedo californica acetylcholinesterase (TcAChE) was studied by using steered molecular dynamics (SMD) simulations on a nanosecond scale with different velocities, and unbinding force profiles were obtained. Different from the unbinding of other AChE inhibitors, such as Huperzine A that undergoes the greatest barrier located at the bottleneck of the gorge, the major resistance preventing E2020 from leaving the gorge is from the peripheral anionic site where E2020 interacts intensively with several aromatic residues (e.g., Tyr70, Tyr121, and Trp279) through its benzene ring and forms a strong direct hydrogen bond and a water bridge with Ser286 via its O24. These interactions cause the largest rupture force, approximately 550 pN. It was found that the rotatable bonds of the piperidine ring to the benzene ring and dimethoxyindanone facilitate E2020 to pass the bottleneck through continuous conformation change by rotating those bonds to avoid serious conflict with Tyr121 and Phe330. The aromatic residues lining the gorge wall are the major components contributing to hydrophobic interactions between E2020 and TcAChE. Remarkably, these aromatic residues, acting in three groups as "sender" and "receiver", compose a "conveyer belt" for E2020 entering and leaving the TcAChE gorge.  相似文献   

19.
The lamellar and cylindrical phases of block copolymers have a number of technological applications, particularly when they occur in supported thin films. One such application is block copolymer lithography, the use of these materials to subdivide or enhance submicrometer patterns defined by optical or electron beam methods. A key parameter of all lithographic methods is the line edge roughness (LER), because the electronic or optical activities of interest are sensitive to small pattern variations. While mean-field models provide a partial picture of the LER and interfacial width expected for the block interface in a diblock copolymer, these models lack chemical detail. To complement mean-field approaches, we have carried out coarse-grain molecular dynamics simulations on model poly(ethyleneoxide)-poly(ethylethylene) (PEO-PEE) lamellae, exploring the influence of chain length and hypothetical chemical modifications on the observed line edge roughness. As expected, our simulations show that increasing chi (the Flory-Huggins parameter) is the most direct route to decreased roughness, although the addition of strong specific interactions at the block interface can also produce smoother patterns.  相似文献   

20.
Using computer simulations, the electrophoretic motion of a positively charged colloid (macroion) in an electrolyte solution is studied in the framework of the primitive model. In this model, the electrolyte is considered as a system of negatively and positively charged microions (counterions and coions, respectively) that are immersed into a structureless medium. Hydrodynamic interactions are fully taken into account by applying a hybrid simulation scheme, where the charged ions (i.e., macroion and electrolyte), propagated via molecular dynamics, are coupled to a lattice Boltzmann (LB) fluid. In a recent electrophoretic experiment by Martin-Molina et al. [J. Phys. Chem. B 106, 6881 (2002)], it was shown that, for multivalent salt ions, the mobility mu initially increases with charge density sigma, reaches a maximum, and then decreases with further increase of sigma. The aim of the present work is to elucidate the behavior of mu at high values of sigma. Even for the case of monovalent microions, a decrease of mu with sigma is found. A dynamic Stern layer is defined that includes all the counterions that move with the macroion while subjected to an external electrical field. The number of counterions in the Stern layer, q(0), is a crucial parameter for the behavior of mu at high values of sigma. In this case, the mobility mu depends primarily on the ratio q(0)/Q (with Q the valency of the macroion). The previous contention that the increase in the distortion of the electric double layer (EDL) with increasing sigma leads to the lowering of mu does not hold for high sigma. In fact, it is shown that the deformation of the EDL decreases with the increase of sigma. The role of hydrodynamic interactions is inferred from direct comparisons to Langevin simulations where the coupling to the LB fluid is switched off. Moreover, systems with divalent counterions are considered. In this case, at high values of sigma the phenomenon of charge inversion is found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号