共查询到20条相似文献,搜索用时 15 毫秒
1.
电解水制氢是最具潜力的绿氢制备技术, 而高效析氢反应(HER)催化剂的开发对其大规模推广意义重大. 选用氯化镍和钼酸铵为镍源和钼源, 通过原位生长法获得NiMo双金属催化剂前驱体, 再以二腈二胺为氮源, 高温氮化-程序升温法制备了一系列NiMoxN@NC催化剂(x代表钼酸铵和氯化镍的物质的量比), 并对催化剂进行了结构、形貌以及金属价态表征. 分别在1 mol/L KOH碱液以及模拟海水中分析了析氢(HER)性能. 结果表明, 碱液中NiMoxN@NC催化剂均具有良好的电荷转移速率(Rct<1 Ω), 具有较好的内在催化活性(Tafel斜率103~168 mV/dec). 其中, NiMo0.75N@NC催化剂具有最高的极限电流(–178 mA/cm2), 最小的过电势η10=0.164 V, η100=0.448 V), 最高的内在催化活性, Tafel斜率只有103 mV/dec, 且具有较好的稳定性. 在海水中, 在10 mA/cm2和40 mA/cm2的负载电流下, NiMo0.75N@NC催化剂依旧表现出了较好的稳定性. 相似文献
2.
过渡金属磷化物因其优异的催化性能成为最有可能取代贵金属的廉价电催化分解水制氢催化材料, 对其进行元素掺杂将有望大幅提升其活性和稳定性. 本文综合评述了近年来通过掺杂改性手段调节过渡金属磷化物性能的相关研究. 讨论了元素种类(金属掺杂、 非金属掺杂、 共掺杂)、 元素数量(单元素掺杂、 多元素掺杂、 高熵化)和掺杂位置等因素对过渡金属磷化物电子结构的影响; 并从实验和理论相结合的角度, 分析了掺杂元素对氢吸附强度、 水吸附解离及电荷转移传输等方面的作用规律, 获得了掺杂结构-电子结构-析氢反应催化性能间的构效关系. 最后, 讨论并提出了相关研究存在的挑战和未来的研究方向. 相似文献
3.
氢气(H2)作为一种可再生的绿色能源,在解决环境和化石能源紧缺问题受到了广泛关注。发展高效、稳定和低成本的析氢反应(Hydrogen evolution reaction, HER)电催化剂是目前氢能大规模利用面临的主要挑战之一。磷化钴(CoP)由于其类金属特性及耐酸碱腐蚀等优点,在电催化HER领域中受到广泛研究。本文以CoP与其它纳米材料形成的异质结所产生的不同效应提升HER活性为出发点,首先介绍了CoP异质结作为电催化剂用于电催化HER的优势及其所面临的挑战,其次从CoP异质结产生的不同效应在电催化HER发挥的作用等方面进行了系统的论述,最后总结和展望了CoP异质结在电催化HER方向的发展前景。 相似文献
4.
5.
氢能是一种绿色、 高效的二次能源, 在廉价的非贵金属催化剂的辅助下, 电解水制氢以其低成本和高效率受到广泛关注. 过渡金属磷化物因其独特近似球形三角棱柱单元结构能够暴露出更多配位不饱和表面原子, 因此在电解水制氢中表现出优异的催化活性和强耐腐蚀性. 本文综述了过渡金属磷化物的制备方法和在电催化析氢中的应用和性能的改善策略. 最后讨论了过渡金属磷化物催化剂存在的一些亟待解决的问题, 并展望了其未来的发展方向. 相似文献
6.
利用可再生能源产生的电能电解水制取氢气,被认为是下一代清洁能源的最佳选择之一。然而,通过电解水可持续的产生氢气需要高活性的催化剂来使得反应有效地进行。基于类石墨烯二维材料的析氢反应电催化剂展现出巨大的潜力,因而备受关注。本文主要结合我们课题组近期在析氢反应电催化剂方面的研究,介绍了类石墨烯二维材料的析氢反应电催化剂的研究进展,主要包括过渡金属二硫族化合物、前过渡金属碳化物(MXenes)以及硼单层纳米片等。最后总结和展望了析氢反应电催化剂所面临的挑战与未来发展方向。 相似文献
7.
电解水与一次可再生能源耦合,可同时提供洁净制氢方式与先进的能源转化技术,有望在未来清洁能源经济中扮演重要角色,而实现这一美好愿景的关键在于研发高活性、低成本的析氢/析氧电催化材料。二硫化钼(MoS2)是颇具代表性的非贵金属析氢电催化材料,纵观其研究历程,先导性理论预测与材料设计、先进制备与表征技术的应用均在改性研究中发挥了至关重要的作用,这也从一个侧面折射出当代电催化剂的研究模式与发展趋势。本文按照重要发现与进展的时间顺序,梳理了MoS2析氢电催化剂的发展历程,重点论述了增多边缘活性位、提高导电性、构筑基面活性位等改性策略的实施方法、效果与机理,最后从全领域总结了MoS2析氢电催化剂的研究启示并展望其未来发展趋势。 相似文献
8.
9.
通过简单的三步水热法实现尖晶石型过渡金属硫化物CuCo2S4与MoS2的复合, 以三维多孔泡沫镍(NF)为基底, 制得自支撑催化电极MoS2@CuCo2S4-Ni3S2/NF. 高分辨透射电子显微镜(HRTEM)、 X射线衍射(XRD)、 X射线光电子能谱(XPS)、 扫描电子显微镜(SEM)及透射电子显微镜(TEM)表征结果表明, MoS2纳米片层密集均匀地生长在CuCo2S4-Ni3S2纳米棒表面, 并形成多级核壳结构. 其碱性条件下(1 mol/L KOH)的电催化析氢性能研究结果表明, MoS2与CuCo2S4的复合和特殊形貌的构筑有效提高了电化学活性面积和电子传导效率, 达到10, 100和300 mA/cm2电流密度分别仅需116, 231和282 mV的过电位, 经2000次循环伏安扫描后, 100 mA/cm2电流密度所对应的过电位仅增大6%, 展现出优异的电催化析氢催化活性及较好的稳定性. 相似文献
10.
自从国际社会提出“碳达峰、碳中和”目标以来,人们越来越意识到节约资源、保护环境、开发新能源的必要性.氢能(H2)作为最具竞争力的清洁能源之一,引起了研究人员的广泛关注.电化学全解水被认为是一种利用风能和太阳能产生氢气的有效技术,其主要由两个半反应组成:析氧反应(OER)和析氢反应(HER).然而,在实际工业化生产过程中阳极反应动力学OER慢,能量转换效率低,阴极反应稳定性差,导致经济效益不理想,因此,急需开发和探索耐久高效的电催化剂.过渡金属硫化物因具有独特的结构特征、丰富的活性位点和可调控的电子性质和组成,而被广泛用于电化学全解水制氢.本文综述了过渡金属硫化物的合成方法,一般包括:水热(溶剂热)法、电化学沉积法、液相剥离法、化学气相沉积法和球磨法,并概述了不同方法的基本概念、合成步骤以及优缺点.总结了近年用于电催化领域中典型单一硫化物(包括MoS2,WS2,Co3S4,Ni3S2等)材料的合成方法和机理,明确了S元素在整个电催化过程... 相似文献
11.
碱性电解液中,电解水析氢的H20解离过程非常缓慢,造成析氢反应较高的过电位和Tafel效率.选择具有本征高析氢活性的合金催化剂与水解离中心-过渡金属氧化物复合,并进一步优化复合物形貌结构,被证明是解决这个科学问题的重要策略.我们报道一例新颖的二元过渡金属纳米片阵列自支撑电极(MoO3_x-MoNi4@NF),多孔MoO... 相似文献
12.
层状二硫化钼由于具有独特的物理化学特性, 在电化学制氢领域受到广泛关注. 二硫化钼的氢惰性表面导致其在酸性和碱性电解液中的析氢活性都比铂差. 将单原子锚定在二硫化钼中能够有效活化惰性的基面,促使其成为先进的析氢电催化剂. 本文从单原子掺杂的二硫化钼的结构出发, 探讨了单原子在提升活性方面的具体机制, 总结了关于单原子掺杂的二硫化钼的制备方法、 表征手段和最新的研究进展, 以及单原子掺杂所产生的缺陷对于活性提升的重要作用. 最后, 基于单原子掺杂二硫化钼在析氢反应中的最新进展, 总结了该领域中相关催化剂的设计思想和主要挑战. 相似文献
13.
以喷雾干燥处理的偏钨酸铵为前驱体, 采用CH4/H2为还原碳化气氛, 利用固定床气固反应法制备了具有介孔结构的碳化钨(WC)粉体. 然后通过浸渍法制备了Pt/WC粉末催化剂. 通过XRD和SEM等测试手段对Pt/WC粉末样品进行了表征, 结果表明, Pt颗粒平均直径约为13.5 nm, 且均匀分散在介孔结构WC载体上. 采用循环伏安和线性扫描等方法研究了酸性介质中Pt/WC粉末微电极对电化学析氢过程的电催化行为. 结果表明, 该电极对析氢反应具有很好的电催化活性和化学稳定性. 通过测试和计算, Pt/WC粉末微电极的Tafel方程中的a值为0.292 V, 属于低超电势析氢材料, 析氢交换电流密度为4.42 mA·cm-2, 与铂电极在同一个数量级上, 当超电势为250 mV时, 其析氢反应的活化能为26.20 kJ·mol-1. 相似文献
14.
固体聚合物水电解制氢技术在可再生能源利用和氢能经济发展中占有极其重要的地位,催化剂是实现高效能源转化的关键。由于聚合物水电解体系的强酸腐蚀性和高氧化电位,其实际应用的催化剂仍以Pt和Ir基催化剂为主。贵金属材料储量有限,价格昂贵,电催化剂成本很高,极大限制了聚合物水电解技术的发展。聚合物水电解催化剂的研究主要集中在降低贵金属用量、提高贵金属利用率和延长催化剂使用寿命等方面。此外,寻找廉价的替代材料,开发非贵金属析氢、析氧电催化剂也是研究的重要内容和发展方向。通过深入认识催化作用机理,结合快速发展的模拟、计算技术,设计制备新型高性能析氢、析氧电催化剂具有重要应用价值。本文总结了当前聚合物水电解体系析氢、析氧催化原理的发展,介绍了新型析氢、析氧催化剂的制备技术和性能研究及双效催化剂的发展,并对提高催化性能的措施做了简单总结和建议,希望对聚合物水电解体系催化剂的进一步研究和发展有积极意义。 相似文献
15.
氢能作为一种零碳排放的清洁能源,主要通过电解水的途径获得。电解水析氢过程所使用的贵金属Pt基催化剂非常稀缺和昂贵,因此开发具有高活性和稳定性的非贵金属催化剂仍然是一个巨大的挑战。自支撑型过渡金属磷化物析氢性能优异,加之有效结合了自支撑基底的诸多优势,有望成为可替代贵金属Pt基催化剂的优良析氢材料。本文详细介绍了自支撑型过渡金属磷化物的研究进展,着重论述了此类型电催化剂的析氢优势及作用机理:(1)自支撑基底3D集成框架导电性较强,可提供大量的电子转移通道,从而加速催化反应进程;(2)自支撑型过渡金属磷化物较大的比表面积将会暴露出更多的活性位点,进而促进催化反应的发生;(3)自支撑型过渡金属磷化物可以直接作为阴极进行析氢反应,避免传统涂覆法中催化剂容易从玻碳电极脱落的弊端。最后,总结了此类型电催化剂用于电解水反应所面临的问题和挑战,并进行了合理的展望。 相似文献
16.
采用简便的一步水热合成法,在泡沫镍上原位生长微量W~(6+)掺入的Fe_(0.2)Ni(OH)_2双金属层状氢氧化物(LDH),以此来降低铁镍材料的过电势。通过场发射扫描电子显微镜(FESEM)、X射线衍射(XRD)、X射线光电子能谱(XPS)和拉曼光谱(Raman)等分析方法对材料形貌、组成、结构等进行表征,发现钨掺杂使催化剂材料的晶体结构和电子结构发生变化,W_(0.03)Fe_(0.2)Ni(OH)_2LDH表现出优异的电化学析氧(OER)和析氢(HER)性能。电化学测试表明该催化剂在25 mA·cm~(-2)电流密度下OER和HER过电势分别仅有271和208 mV,塔菲尔斜率分别为61和181 mV·dec~(-1)。此外,经过长达20 h计时电位稳定性测试后,材料的催化性能未见明显下降。 相似文献
17.
18.
碳化钨由于其具有独特的类Pt电子结构和催化性能,使得其在电催化析氢领域吸引广泛关注。杂原子掺杂以及构筑高比表面积的碳化钨纳米材料是进一步提升其性能的重要策略。本研究以表面含有丰富极性官能团的脲醛树脂作为基底,在其支链骨架上均匀固载多酸阴离子簇,通过可控碳化获得了具有高比表面积的杂原子掺杂的碳化钨(P-W2C@NC)全pH析氢催化剂。该材料的BET比表面积高达136 m2 g-1。XRD、XPS、SEM和TEM表征证明催化剂是由含有磷掺杂的碳化钨纳米颗粒和包覆在碳化钨颗粒表面的薄层氮掺杂碳层共同构成。P-W2C@NC在全pH值电解液都具有高效的析氢性能,在0.5 M硫酸、1 M氢氧化钾和0.1 M磷酸缓冲液中,分别仅仅需要过电位83 mV、63 mV和179 mV就可以达到电流密度10 mA cm-2,并且具有超过20 h的长期催化稳定性。 相似文献
19.
20.
能源危机和环境污染日益严重,寻找可持续且清洁的新能源成为趋势,而氢能被视为最理想的选择。贵金属基催化剂虽活性优异但成本高、稳定性差,因此开发可代替如铱(Ir)和钌(Ru)等贵金属催化剂的非贵金属催化剂是研究热点,而掌握析氢反应(Hydrogen Evolution Reaction,HER)机理是合成新型高效电催化剂的关键。本文综述了近年来非贵金属基HER催化剂的研究进展,围绕Fe、Co、Ni和Mn等非贵金属对电催化构建策略和提高催化活性进行了讨论,其中包括组分调控和缺陷工程等方面。此外,还展望了HER催化剂的应用前景。 相似文献