首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为减缓温室效应,将CO_(2)转换成高附加值的甲醇是减少CO_(2)排放的有效途径,而高效催化剂是CO_(2)加氢制甲醇反应规模化的关键.可调控合成的具有量子尺寸效应的纳米催化剂在该反应上具有独特的优势.因此我们深入探讨了反应机理,综述了纳米材料在CO_(2)加氢制甲醇中的研究进展,最后给出了高效催化剂可能的发展方向.  相似文献   

2.
刘聪  胡兴邦 《分子催化》2022,36(2):162-170
CO_(2)加氢制甲酸由于需同时活化惰性氢气及CO_(2)而富有挑战性,同时此过程原子经济性100%,具有很好的理论和现实研究价值,但文献中报道的活性较好的催化剂均为贵金属催化剂.为了开发活性更高的用于CO_(2)加氢制甲酸的铁基催化剂,我们采用理论计算方法研究了12种不同种类的PNP-Fe(PNP=2,6-(二-叔丁基-磷甲基)吡啶)化合物催化CO_(2)加氢制甲酸的过程.理论研究结果表明,CO_(2)加氢制甲酸反应过程包括H2活化及CO_(2)插入金属氢键两个步骤,H_(2)活化过程是整个反应的速控步骤.催化剂吡啶环上进行P原子取代可以显著降低H_(2)活化能垒.基于以上发现,我们设计了一种新颖的高效铁基催化剂,使用此催化剂催化CO_(2)加氢制甲酸反应,速控步骤能垒只有85.6 kJ/mol,催化活性与贵金属的比较接近.我们研究的12种铁基催化剂速控步骤能垒范围为85.6~126.4 kJ/mol,显示了配体良好的调控催化活性能力.  相似文献   

3.
研究了CO2在Cu-Zn-Al催化剂上的加氢合成甲醇反应。发现在原料气中添加少量的CO可提高甲醇的选择性和收率。TPD和TPSR结果表明,CO占据催化剂表面部分活性位并抑制CO2的逆水煤气转换,促进了甲醇的生成。  相似文献   

4.
本文采用"原位"红外光谱结合XPS和XRD比较了CuCrK、CoCrK和CuCoCrK三种催化剂在2.5MPa,270℃条件下,CO_2+H_2合成醇的中间体及其演变过程;初步探讨了Cu-Co催化剂中活性金属的作用、氧化物的作用、以及甲醇合成机理和碳链增长机理。研究结果表明,Cu是最主要的合成甲醇活性组分,Co能够导致CO_2离解吸附,而碳链增长则需要二者的协同作用。吸附在金属表面的甲酸盐是甲醇合成的中间体,CO插入表面其它基团是碳链增长的关键步骤,一定量的氧化物的存在对Cu基催化剂合成甲醇活性是必不可少的,能够起到稳定表面甲酸盐的作用。  相似文献   

5.
聚对苯二甲酸乙二醇酯(PET)塑料可通过水解反应回收成对苯二甲酸(PTA)与乙二醇单体,后续PTA的综合利用具有一定的研究意义。本文以Ru/CeO_(2)多相催化PTA加氢转化为主要研究对象,通过将可变价氧化物CeO_(2)载体进行高温氢气还原预处理,尝试使其表面形成更多的氧缺陷与Lewis酸位点,以增强其催化PTA加氢转化反应中的活性。结果表明,经过高温氢气还原的CeO_(2)载体负载的Ru基催化剂在该反应中的催化活性显著优于未经过处理的样品,其在200~250℃下PTA转化率提高179%~300%,初步推测是由于高温氢气还原处理在载体表面构建了更多的氧缺陷与Lewis酸位点,增强了其对含有富电子芳环的反应物分子的吸附。本工作对于铈基氧化物多相催化剂的优化设计与表面调控具有一定的借鉴意义。  相似文献   

6.
以PCN-6(Cu_(3)TATB_(2))为母体材料,Co、Fe、Mn、Zn和Ni为第2种金属,将蒸气辅助法应用于双金属有机框架材料(MOFs)的合成中,并成功制备出PCN-6(M)(M=Co/Fe/Mn/Zn/Ni)系列双金属材料,采用粉末X射线衍射仪(PXRD)、扫描电子显微镜(SEM)、能谱仪(EDS)、电感耦合等离子发射光谱仪(ICP-OES)和气体吸附等技术手段对合成的材料进行了结构、形貌、组成和性能的表征,结果表明制备的PCN-6(M)系列双金属材料的PXRD衍射峰和形貌与母体材料PCN-6一致,交换的金属在材料中分布均匀,交换量(质量分数)分别为Co:12.1%,Fe:22.0%,Mn:16.1%,Zn:17.5%,Ni:16.8%,远高于相同条件下溶剂热法的金属交换量(5%左右),在气体吸附性能方面,PCN-6(Zn)、PCN-6(Ni)和PCN-6(Co)这3种双金属材料对CH_(4)和CO_(2)的吸附能力优于母体材料,理想吸附溶液理论(IAST)计算表明,PCN-6(Fe)对CO_(2)/CH_(4)的吸附选择性优于母体材料。通过蒸气辅助法制备双金属MOFs材料,可以提高金属的交换量并改变MOFs材料对不同气体分子的亲合力,进而提高材料对气体的吸附性能和选择性。蒸气辅助法为双金属MOFs材料的制备提供了新的思路,且有望用应于其它材料的制备中。  相似文献   

7.
通过M的调变作用,制备了一系列六铝酸盐MNiAl_(11)O_(19-δ)(M=Ca、Sr和Ba)作为二氧化碳重整甲烷制合成气反应新催化剂,探索了它们的结构和催化性能。结果表明,这些催化剂在高温下对二氧化碳重整甲烷制合成气反应都表现出良好的催化活性和稳定性,在780℃下反应2小时,甲烷和一氧化碳转化率均在93.4%和91.2%以上,没有发现活性组分Ni的高温烧结和催化剂失活。同时,不同M调变对六铅酸盐催化剂的催化活性有不同影响。  相似文献   

8.
CO2加氢对于CO2转化制备高附加值化学品和燃料以实现二氧化碳利用及能源储存至关重要。CO2加氢包括甲烷化、逆水煤气变换、甲醇化和CO2直接费托合成等。碳化钼,尤其是其二维材料,由于其低成本和良好的性能而备受关注。在CO2加氢反应中,由于碳的渗入,导致晶格膨胀以及价电子增加,碳化钼基催化剂展现出了类似于贵金属催化剂的性质。碳化钼可以通过程序升温渗碳法、选择性蚀刻法、机械合金合成法、化学气相沉积法、原位热渗碳法以及溶液相合成法等来制备。到目前为止,学者已经对基于碳化钼的材料的CO2转化进行大量研究,这些材料具有良好的CO2转化活性和对目标产物的选择性。碳化钼材料的催化性能可以通过调节碳化钼中的C/Mo比、在碳化钼与负载金属之间建立强的金属-载体相互作用以及调整材料的界面结构来实现。然而,基于碳化钼的热催化CO2转化仍处于初级阶段。本文综述基于碳化钼的热催化CO2加氢制备高附加值化学品和燃料的研...  相似文献   

9.
应用XPS,XAES和紫外漫反射光谱法研究了CuO-ZnO/氧化物上CO2/H2合成甲醇的反应活性中心.CuO-ZnO/氧化物催化剂上的反应活性中心是存在于CuO-ZnO固溶体中的Cu-Zn-O("□"为氧空位),活性中心的Cu价态为Cu-和Cu0.反应活性中心在CuOZnO-ZrO2催化剂上比在其它CuO-ZnO/氧化物催化剂如CuO-ZnO,CuO-ZnO-MgO,CuOZnO-Al2O3和CuO-ZnO-r2O3上更加稳定.  相似文献   

10.
采用共沉淀法,用助剂TiO2对CuO-ZnO-Al2O3催化剂改性,TiO2由钛酸正丁酯水解而得,并考察了其在CO2催化加氢制甲醇反应中的催化性能.在反应温度260℃、压力2.6 MPa、H2∶CO2 =3∶1(体积比)、SV=3600 mL/(g·h)条件下,与空白样CuO-ZnO-Al2O3比较,结果显示,TiO2...  相似文献   

11.
Li-Mn/WO_(3)/TiO_(2)催化剂具有良好的低温OCM催化性能,采用浸渍法制备Li-Mn/WO_(3)/TiO_(2)催化剂,并详细考察WO_(3)对催化剂物理化学性质及催化性能的影响.利用X射线衍射(XRD)、CO_(2)程序升温脱附(CO_(2)-TPD)、O_(2)程序升温脱附(O_(2)-TPD)、H_(2)程序升温还原(H_(2)-TPR)、拉曼光谱(Raman)和X射线光电子能谱(XPS)等表征技术对催化剂进行了研究,发现WO_(3)的添加提高了C_(2)选择性,并有效抑制了深度氧化.XRD与CO_(2)-TPD结果表明,WO_(3)的添加不仅有利于金红石型TiO_(2)的形成而且能够中和催化剂表面的强碱位,从而抑制了深度氧化反应.O_(2)-TPD和H_(2)-TPR结果表明,WO_(3)的添加降低了晶格氧(O^(2-))移动性,进而提高了反应的C_(2)选择性.此外,WO_(3)的添加促使了低温氧化偶联活性物种MnTiO_(3)的形成并提高了活性物种的分散性,因此提高了催化剂甲烷氧化偶联的反应活性和选择性.所有Li-Mn/x%WO_(3)/TiO_(2)催化剂中,Li-Mn/5%WO_(3)/TiO_(2)催化剂显示出最佳的OCM反应性能.在750℃,CH_(4)∶O_(2)∶N_(2)=10∶4∶5,GHSV=2280 mL·g^(-1)·h^(-1)条件下,最高的C_(2)产物收率可达16.3%.  相似文献   

12.
本实验采用水热法合成了Co_(3)V_(2)O_(8)纳米粒子,并将其滴涂至玻碳电极(GCE)上形成Co_(3)V_(2)O_(8)修饰电极,通过循环伏安法(CV)和差分脉冲伏安法(DPV)测试了修饰电极的电化学性能,并用于检测水中的对硝基苯酚。研究了Co_(3)V_(2)O_(8)的修饰量、电解质缓冲溶液的pH值和扫描速率对修饰电极的电催化性能的影响。研究结果表明,在优化的实验条件下,经Co_(3)V_(2)O_(8)修饰过的电极对对硝基苯酚表现出优异的检测性能,其线性范围和检出限分别为0.33~3000μmol·L^(-1)和0.08μmol·L^(-1)。该修饰电极具有良好的选择性、重复性与稳定性,应用于实际水样目标物的检测,回收率在95.7%~102.7%之间。  相似文献   

13.
制备了几种CU-CO尖晶石,并用于催化CO2加氢合成低碳醇反应。结果表明,Cu-Co尖晶石是一种极具潜力的催化剂前驱体,具有出色的C2+醇合成能力。但是,当在该催化剂中加入KOH时,这种能力下降。XRD表征表明,KOH的加入破坏了CU-Co合金的生成。一些结果被讨论。  相似文献   

14.
研究了YBaCu3O6~7超导催化剂上CO2的加氢制醇反应。考察了温度、压力和空速等条件对催化剂反应性能的影响。反应的主要产物是甲醇、CO和少量甲醚。利用XPS、XRD和AFM等技术对催化剂的结构、铜的存在状态和反应活性位进行表征发现,在反应过程中,YBa2Cu3O6~7由orthombic相转变为tetragonal相。反应活性位可能是Cu(I)物种。反应后催化剂颗粒的分散程度明显提高  相似文献   

15.
(Cu)CeO2复合氧化物对硝基苯加氢反应的催化性能   总被引:1,自引:0,他引:1  
张全信  刘希尧  陈皓  雷鸣 《应用化学》2002,19(11):1049-0
(Cu)CeO2复合氧化物对硝基苯加氢反应的催化性能  相似文献   

16.
王佳赫  刘大勇  刘伟  王林  董彪 《应用化学》2022,39(4):629-646
光催化纳米TiO_(2)以其出色的光催化、化学稳定性以及广谱抗菌性受到科研人员的青睐。然而,其存在的一些问题,如宽带隙、高过电位和光生载流子快速复合等限制了其光催化性能。本文综述了近年来TiO_(2)光催化在抗菌方面的研究进展。对纳米TiO_(2)光催化抗菌作用机理进行了探讨,并讨论了提高TiO_(2)光催化抗菌活性的几种策略,包括进行纳米TiO_(2)结构设计、光的调控、掺杂金属离子、掺杂非金属离子、贵金属修饰和偶联其他材料。改性TiO_(2)光催化剂显著抑制了细菌细胞的生长,在生物医学工程领域具有独特的应用前景。  相似文献   

17.
采用溶剂热法一步合成氨基改性的Fe_(2)O_(4)(NH_(2)-Fe_(3)O_(4))纳米材料,通过扫描电镜、红外光谱、X射线衍射等方法对合成纳米材料进行表征,并将NH_(2)-Fe_(3)O_(4)滴涂在玻碳电极(GCE)表面制成电化学传感电极(NH_(2)-Fe_(3)O_(4)/GCE)。结果发现,NH_(2)-Fe_(3)O_(4)/GCE在最优条件下可以同时测定Cd^(2+)和Pb^(2+),Cd^(2+)在1.2×10^(-8)~9.6×10^(-5)mol·L^(-1)浓度范围内与峰电流值呈良好的线性关系(R=0.9949),检测限为1.4×10^(-9)mol·L^(-1);Pb^(2+)在4.8×10^(-8)~9.6×10^(-5)mol·L^(-1)时浓度范围内与峰电流值呈良好的线性关系(R=0.9843),检测限是2.7×10^(-9)mol·L^(-1)。  相似文献   

18.
以LiF-DyF_(3)为熔盐,电解Dy_(2)O_(3),Cu_(2)O制备Dy-Cu合金过程中,明确Dy_(2)O_(3),Cu_(2)O溶解度是制定合理加料制度、提高电解效率的关键。采用等温饱和法研究了Dy_(2)O_(3),Cu_(2)O溶解平衡时间,考察了温度、DyF_(3)浓度对单一氧化物(Dy_(2)O_(3)或Cu_(2)O)及混合氧化物(Dy_(2)O_(3)与Cu_(2)O)溶解度的影响,通过最小二乘法对溶解度数据进行了拟合,建立了温度、DyF_(3)浓度与Dy_(2)O_(3),Cu_(2)O溶解度之间的数学回归方程。研究结果表明,Dy_(2)O_(3),Cu_(2)O在LiF-DyF_(3)熔盐中溶解平衡的时间分别为110,120 min,溶解反应为吸热反应。相同温度下,随熔盐中DyF_(3)浓度增大,Dy_(2)O_(3)的溶解度逐渐增大,Cu_(2)O溶解度变化较小;在温度为910~1030℃,熔盐中DyF_(3)浓度为15%~40%(摩尔分数)时,Dy_(2)O_(3),Cu_(2)O溶解度分别为0.55%~3.45%,0.39%~0.52%。  相似文献   

19.
本文研究了[Co(NH_3)_4CO_3]Cl、[Co(en)_2CO_3]C1分别与NH_4SCN在100℃发生的固相取代反应.[Co(NH_3)_4CO_3]Cl与NH_4SCN反应生成trans-[Co(NH_3)_4(NCS)_2]~+;[Co(en)_2CO_3]Cl与NH_4SCN反应先生成cis-[Co(en)_2(NCS)_2]~+,然后转化成trans-(Co(en)_2(NCS)_2]~+。采用气相色谱、红外光谱、X粉末衍射和核磁共振法对相应反应体系及其产物进行了测试,推测反应按S_(N~2)机理进行。  相似文献   

20.
采用密度泛函理论(DFT)研究了C_(3)H_(8)和CO_(2)在Ni_(x)Cu_(y)-B_(24)N_(28)(x+y=4,x=1、2、3、4)表面吸附及速控步骤反应机理.计算了C_(3)H_(8)、CO_(2)和相应中间体在Ni_(x)Cu_(y)-B_(24)N_(28)表面的吸附能以及6条可能路径下的反应热和活化能.计算结果表明,C_(3)H_(8)和CO_(2)在Ni_(x)Cu_(y)-B_(24)N_(28)表面是物理吸附,C_(3)H_(8)+CO_(2)→CH_(3)CHCH_(3)+OCOH是最有利的路径,其在不同催化剂表面的活化能顺序是NiCu_(3)-B_(24)N_(28)(1.42 eV)、Ni_(2)Cu_(2)-B_(24)N_(28)(1.57 eV)、Ni_(3)Cu-B_(24)N_(28)(1.62 eV)、Ni_(4)-B_(24)N_(28)(1.75 eV).由此可知,在Ni_(x)Cu_(y)-B_(24)N_(28)催化CO_(2)氧化C_(3)H_(8)的体系中,Cu含量直接影响其催化活性,即NiCu_(3)-B_(24)N_(28)用于催化CO_(2)氧化C_(3)H_(8)有一定优势.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号