首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A two-dimensional (2D) plane model of saltwater intrusion was developed, for the simulation of groundwater level and the average solute concentration in a 2D horizontal plane, together with the estimation of the saltwater depth. The proposed approach is of particular interest when assessing the effect of different regional pumping scenarios on groundwater level and its quality. The corresponding MEL2DSLT code was developed on the basis of the Modified Eulerian–Lagrangian (MEL) method to overcome difficulties arising from hyperbolic behavior of flow and transport equations, due to the advective nature of solute transport and heterogeneity of the soil characteristics (permeabilities and dispersivities). The code was verified against the 2D cross sectional model SUTRA and the three-dimensional (3D) model SWICHA. Simulation was conducted concerning the problem of saltwater intrusion in the Khan Yunis portion of the phreatic coastal aquifer of Gaza Strip. After calibrating the model for the aquifer parameters, we investigated its predictions resulting from various regional pumping scenarios using the actual pumping intensity from the year 1985 and extrapolating on the basis of 3.8% annual population growth. Results show a considerable depletion of groundwater level and intrusion of seawater due to excessive pumping.  相似文献   

2.
针对具有弱界面的叠层压电球壳自由振动,引入两个位移和应力函数,从三维压电弹性理论基本方程出发建立了分别对应于两类振动形式的独立状态方程,并通过球面谐函数展开技术以及近似层合模型将其化为关于径向坐标的常系数状态方程。采用弱界面模型建立状态向量的界面传递关系,与层内传递关系得到球壳内外状态变量的整体传递关系。最后考虑球壳内外边界自由条件, 得到了两类振动形式的频率方程。通过与已有精确解的比较验证了本文解的准确性,数值详细表明弱界面弹性柔性系数的大小对叠层球壳自振频率有较大影响,但弱界面导电性的高低对自振频率的影响不大。  相似文献   

3.
This paper adopts free interface modal synthesis method to divide the whole automobile model into many sub-structures and establish dynamical equations of automobile nonlinear coupled system. The Monte Carlo method is used to simulate the spectrum of the random excitation of the road and the engine. Based on the automobile dynamical equations, a simulation is carried out within time domain and frequency domain on the characteristic of vibration due to the excitation of automobile wheel and the engine. The results are verified by bench experiment to make the research more practicable. In order to do research of rubber hysteresis’ influence on automobile dynamic property, Poincare diagrams and amplitude frequency characteristic curves were drawn with automobile linear and nonlinear models. The results show that the nonlinear dynamical model concerning rubber hysteresis not only can improve the simulation accuracy, but also is beneficial to find some complex nonlinear dynamical behaviors of vehicles.  相似文献   

4.
A 2‐dimensional hydrodynamic finite volume model has been proposed for simultaneous simulation of free surface and saturated porous media. The governing equations of the former are 2‐dimensional averaged in a unit width of Navier‐Stokes, whereas that of the latter are Darcy law. An efficient, simple, and stable algorithm has been proposed to track the surface elevation in Cartesian coordinate system by which the water elevation in each computational column has been computed along with the other pressure unknowns simultaneously. The surface position has not been considered to remain in a specific layer so the number of cells in each column have been variably adjusted in accordance with the water surface elevation. Performance of the coupled model has been validated against a range of hydrodynamic problems including propagation of linear short wave, seepage test, tidal oscillation in a lagoon system, gravity current, and saltwater intrusion. Comparison between numerical results, analytical solutions, and experimental data demonstrates that the model represents well the interacting surface water and ground water flow and solute transport processes.  相似文献   

5.
We propose an operator splitting method which is especially suitable for long-time integration of geophysical equations characterized by the presence of multiple-time scales and weak-operator splitting. The method is illustrated on the classical rotating shallow-water equations on a periodic domain with large ageostrophic (unprepared) initial data. The asymptotic splitting decomposes the solution into a first part which solves the quasigeostrophic equation; a second one which is the “slow” ageostrophic component of the flow; and a corrector. The particular decomposition we use ensures that the corrector is small for large rotation. By considering only the “slow” ageostrophic and quasigeostrophic components a numerical approximation to the shallow-water equations is derived that effectively removes the time-step restrictions caused by the presence of fast waves. The splitting is exact in the asymptotic limit of large rotation and includes the nonlinearity of the equations. Numerical examples are included. These examples demonstrate a significant reduction in the computational cost over direct numerical approximations of the shallow-water equations. We conclude with an outline of a general operator splitting method for more general primitive geophysical equations. Received 1 July 1998 and accepted 1 December 1998  相似文献   

6.
Simulating fluid-structure interaction problems usually requires a considerable computational effort. In this article, a novel semi-implicit finite volume scheme is developed for the coupled solution of free surface shallow water flow and the movement of one or more floating rigid structures. The model is well-suited for geophysical flows, as it is based on the hydrostatic pressure assumption and the shallow water equations. The coupling is achieved via a nonlinear volume function in the mass conservation equation that depends on the coordinates of the floating structures. Furthermore, the nonlinear volume function allows for the simultaneous existence of wet, dry and pressurized cells in the computational domain. The resulting mildly nonlinear pressure system is solved using a nested Newton method. The accuracy of the volume computation is improved by using a subgrid, and time accuracy is increased via the application of the theta method. Additionally, mass is always conserved to machine precision. At each time step, the volume function is updated in each cell according to the position of the floating objects, whose dynamics is computed by solving a set of ordinary differential equations for their six degrees of freedom. The simulated moving objects may for example represent ships, and the forces considered here are simply gravity and the hydrostatic pressure on the hull. For a set of test cases, the model has been applied and compared with available exact solutions to verify the correctness and accuracy of the proposed algorithm. The model is able to treat fluid-structure interaction in the context of hydrostatic geophysical free surface flows in an efficient and flexible way, and the employed nested Newton method rapidly converges to a solution. The proposed algorithm may be useful for hydraulic engineering, such as for the simulation of ships moving in inland waterways and coastal regions.  相似文献   

7.
Fluid–solid coupled Conjugate Heat Transfer (CHT) simulations are relevant to many practical problems. Most existing interfacing methods have been developed for Reynolds averaged Navier-Stokes solvers. For high fidelity turbulence scale-resolved flow solvers however, the CHT interface methods face significant challenges arisen from a wide frequency spectrum of unsteady disturbances to be dealt with, compounded by the huge time scale disparity between fluid and solid domains.In this paper, a closely coupled non-partitioned (monolithic) CHT method is presented. The main issues of interest are the prohibitive time costs of direct time domain CHT methods and an extra mesh dependency in the solid domain when resolving high frequency turbulence disturbances. Based on a temporal Fourier spectral framework, the present CHT interface method entails a moving-average for the time-mean flow and a discrete Fourier transform on-the-fly at each time step. Taking advantage of a semi-analytical transfer function and harmonic balancing for the CHT interface, we can achieve solving the solid domain completely in its own time step (3–5 orders of magnitude larger than that of the fluid domain). The present interface method can effectively circumvent aliasing errors and extra solid domain mesh-dependence encountered by other time-domain coupling methods when applied to turbulence scale-resolved CHT solutions. Illustrative stability analyses also show that the numerical stability of the present CHT interface should require no more stringent conditions than that in either fluid or solid domain. The computational results and analyses highlight the advantages of the present methodology in terms of both the computational efficiency and accuracy, in comparison with a conventional directly coupled interface method. Furthermore, a case study aided by a simple interface response analysis highlights much augmented wall temperature fluctuations and higher sensitivity to the interface treatment when a low conductivity protection layer (Thermal Barrier Coating, TBC) is added. The present study underlines the relevance of accounting for fluid disturbances over a range of frequencies in an effective and accurate CHT interface treatment.  相似文献   

8.
直立码头前船波浪力耦合计算模型   总被引:2,自引:1,他引:1  
建立了外域用Boussinesq方程、内域用刚体运动方程的直立码头前二维船剖面波浪力的时 域计算耦合模型,内域与外域在交界面的匹配条件是流量连续和压力相等. 进行了相关模型 实验,并把计算结果与实验结果进行了对比. 推导了船体与水底和直立码头之间间隙内流体 运动的自振频率,研究了间隙内流体运动的共振现象.  相似文献   

9.
提出了一种基于滑移界面耦合技术的旋转电机磁场仿真方法。首先,对旋转电机问题建立等效弱形式,用Lagrange乘子法施加Coulomb规范条件和滑移界面处的磁矢势连续性条件;然后,采用混合单元方法离散整个求解域中的未知量,采用棱边单元法离散滑移界面处的Lagrange矢量乘子,并采用多点约束法耦合滑移界面处的Lagrange标量乘子自由度,该方法无须在旋转电机模型的非匹配网格中构建生成树,即可自动保证磁矢势解的唯一性;最后,采用旋转线圈案例和简化的永磁同步电机案例验证了本文方法的有效性。  相似文献   

10.
This paper presents a new heterogeneous multiscale modeling method for porous media flows. Physics at the global level is governed by one set of PDEs, while features in the solution that are beyond the resolution capacity of the global model are accounted for by the next refined set of governing equations. In this method, the global or coarse model is given by the Darcy equation, while the local or refined model is given by the Darcy–Stokes equation. Concurrent domain decomposition where global and local models are applied to adjacent subdomains, as well as overlapping domain decomposition where global and local models coexist on overlapping domains, is considered. An interface operator is developed for the case where global and local models commute along the common interface. For the overlapping decomposition, a residual‐based coupling technique is developed that consistently facilitates bottom‐up embedding of scale effects from the local Darcy–Stokes model into the global Darcy model. Numerical results are presented for nonoverlapping and overlapping domain decompositions for various benchmark problems. Computed results show that the hierarchically coupled models accurately account for the heterogeneity of the medium and efficiently incorporate local features into the global response. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
A three-dimensional coupled numerical model is developed to describe creeping flow in a computational domain that consists of a thick viscous layer overlaid with a thin multilayered viscous sheet. The density of the sheet is assumed to be lower than that of the layer. The model couples the Stokes equations describing the flow in the layer and the Reynolds equations describing the flow in the sheet. We investigate the long-time behavior of the flow in the sheet by using an asymptotic method and derive an ordinary differential equation for the sheet boundary displacements and the velocities at the interface between the sheet and the layer. The Stokes and Reynolds equations are coupled by applying the resulting equation as an internal boundary condition. Numerical implementation is based on a modified finite element method combined with the projection gradient method. The computational domain is discretized into rectangular hexahedra. Piecewise square basis functions are used. The model proposed enables different-type hydrodynamic equations to be coupled without any iterative improvements. As a result, the computational costs are reduced significantly in comparison with available coupled models. Numerical experiments confirm that the three-dimensional coupled model developed is of good accuracy.  相似文献   

12.
This paper presents an analytical study of laminar fully developed free-convection flow between two vertical walls partially filled with porous matrix and partially with a clear fluid having interface vertically. The momentum transfer in porous medium is described by the Brinkman-extended Darcy model and the two regions are coupled by equating the velocity and shear stress at the interface. The governing equations having non-linear nature have been solved by using perturbation method. It has been found that effect of Brinkman term is in entire porous domain for large values of Darcy number while its effect is confined nearer to interface and wall for small values of Darcy number. Received on 19 March 1997  相似文献   

13.
The unsteady, incompressible, viscous laminar flow over a NACA 0012 airfoil is simulated, and the effects of several parameters investigated. A vortex method is used to solve the two-dimensional Navier–Stokes equations in the vorticity/stream-function form. By applying an operator-splitting method, the “convection” and “diffusion” equations are solved sequentially at each time step. The convection equation is solved using the vortex-in-cell method, and the diffusion equation using a second-order ADI finite difference scheme. The airfoil profile is obtained by mapping a circle in the computational domain into the physical domain through a Joukowski transformation. The effects of several parameters are investigated, such as the reduced frequency, mean angle of attack, location of pitch axis, and the Reynolds number. It is observed that the reduced frequency has the most influence on the flow field.  相似文献   

14.
A numerical method is presented for the analysis of interactions of inviscid and compressible flows with arbitrarily shaped stationary or moving rigid solids. The fluid equations are solved on a fixed rectangular Cartesian grid by using a higher‐order finite difference method based on the fifth‐order WENO scheme. A constrained moving least‐squares sharp interface method is proposed to enforce the Neumann‐type boundary conditions on the fluid‐solid interface by using a penalty term, while the Dirichlet boundary conditions are directly enforced. The solution of the fluid flow and the solid motion equations is advanced in time by staggerly using, respectively, the third‐order Runge‐Kutta and the implicit Newmark integration schemes. The stability and the robustness of the proposed method have been demonstrated by analyzing 5 challenging problems. For these problems, the numerical results have been found to agree well with their analytical and numerical solutions available in the literature. Effects of the support domain size and values assigned to the penalty parameter on the stability and the accuracy of the present method are also discussed.  相似文献   

15.
本文在复频域内,通过应用混合变量粘弹性波方程和线性常微分方程组的指数矩阵解法,给出了一种计算非均匀吸收介质中地震波传播的广义传播矩阵解法。该方法适用于各种粘弹性模型,可模拟任意震源及所产生的各种体波、面波,数值结果表明具有很高的计算精度。  相似文献   

16.
将传递函数法应用于大展弦比机翼的阵风响应分析。首先,基于二元机翼的运动方程和准定常片条理论建立机翼的阵风响应微分方程,对其进行Laplace变换,并转换为状态空间方程形式。然后,运用传递函数方法,获得机翼响应在频域的解析解,通过Laplace数值逆变换求得机翼在时域内的响应。通过与已有文献结果对比,验证了本文方法的正确性。最后,采用该方法求解了“1-cos”型阵风和连续大气湍流作用下的机翼响应,并对结果进行了分析讨论。  相似文献   

17.
The problem of unsteady oscillatory flow and heat transfer of porous medin sandwiched between viscous fluids has been considered through a horizontal channel with isothermal wall temperatures. The flow in the porous medium is modeled using the Brinkman equation. The governing partial differential equations are transformed to ordinary differential equations by collecting the non-periodic and periodic terms. Closed-form solutions for each region are found after applying the boundary and interface conditions. The influence of physical parameters, such as the porous parameter, the frequency parameter, the periodic frequency parameter, the viscosity ratios, the conductivity ratios, and the Prandtl number, on the velocity and temperature fields is computed numerically and presented graphically. In addition, the numerical values of the Nusselt number at the top and bottom walls are derived and tabulated.  相似文献   

18.
This paper is concerned with the formulation and the evaluation of a hybrid solution method that makes use of domain decomposition and multigrid principles for the calculation of two-dimensional compressible viscous flows on unstructured triangular meshes. More precisely, a non-overlapping additive domain decomposition method is used to coordinate concurrent subdomain solutions with a multigrid method. This hybrid method is developed in the context of a flow solver for the Navier-Stokes equations which is based on a combined finite element/finite volume formulation on unstructured triangular meshes. Time integration of the resulting semi-discrete equations is performed using a linearized backward Euler implicit scheme. As a result, each pseudo time step requires the solution of a sparse linear system. In this study, a non-overlapping domain decomposition algorithm is used for advancing the solution at each implicit time step. Algebraically, the Schwarz algorithm is equivalent to a Jacobi iteration on a linear system whose matrix has a block structure. A substructuring technique can be applied to this matrix in order to obtain a fully implicit scheme in terms of interface unknowns. In the present approach, the interface unknowns are numerical fluxes. The interface system is solved by means of a full GMRES method. Here, the local system solves that are induced by matrix-vector products with the interface operator, are performed using a multigrid by volume agglomeration method. The resulting hybrid domain decomposition and multigrid solver is applied to the computation of several steady flows around a geometry of NACA0012 airfoil.  相似文献   

19.
This paper deals with the double-constraint methodology for calibration of steady-state groundwater flow models. The methodology is based on updating the hydraulic conductivity of the model domain by comparing the results of two forward groundwater flow models: a model in which known fluxes are specified as boundary conditions and a model in which known heads are specified as boundary conditions. A new zone-integrated double-constraint approach is presented by partitioning the model domain in zones with presumed constant hydraulic conductivity (soft data), and the double-constraint methodology is reformulated accordingly. The feasibility of the method is illustrated by a practical case study involving a numerical steady-state groundwater flow model with about 3 million grid blocks, subdivided into four zones corresponding to the major hydrogeological formations. The results of the zone-integrated double-constraint method for estimating the horizontal and vertical hydraulic conductivities of the zones compare favourably with a classical model calibration based on minimisation of the differences between calculated and measured heads, while the double-constraint method proves to be more robust and computationally less cumbersome.  相似文献   

20.
王小贞  臧跃龙 《力学季刊》2001,22(4):455-459
本文采用了边界元法对容器中粘性、不可压缩液体小幅晃动进行数值分析。在频域内考虑二维线性化Navier-Stokes方程,以问题的物理变量作为数值分析的未知函数,并推导了该问题分析的边界积分方程。自由面上的动力学条件为法向正应力和切向剪应力为零,这两个条件本身是线性的,避免了采用无粘势理论边界条件的非线性,固壁面上采用流体质点与固壁质点速度相等的条件,在数值计算过程中,结合有限差分法对边界条件进行了处理,由此建立了问题的一个边界元数值求解过程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号