首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Wall lizards (Hemidactylus frenatus) were adapted to 20, 25, and 30 °C, and the liver was examined using standard transmission electron microscopy (TEM) and biochemical analysis. Peroxisomes were visualized after using the 3,3′-diaminobenzidine (DAB) technique. Catalase, uricase and protein content wsere determined biochemically. The hepatocytes of animals adapted to higher temperature displayed larger lipid inclusions than those of animals adapted to lower temperature. Rough endoplasmic reticulum was better developed in the animals kept at low temperature (20 and 25 °C) than in the animals held at 30 °C. Cytoplasmic crystalline structures were visualized, and better developed in the hepatocytes at 25 °C. Peroxisomes varied with the temperature, being more frequent in the animals kept at 20 °C, while the bigger ones prevailed in the animals kept at 30 °C. The higher catalase activity at higher temperature was correlated to an increase in staining intensity of DAB-incubated peroxisomes as visualized cytochemically in TEM. The biochemical results confirmed the cytochemical reaction observed by TEM. The hepatocytes of the animals at 30 °C showed a reduction in the number of peroxisomes, however, at this temperature the largest peroxisomes with a stronger reaction to DAB and a higher activity of catalase predominate. In contrast, the uricase activity showed no significant variation in relation to adaptation temperature. Overall, these data show the morphological and functional plasticity of hepatocytes to temperature adaptation of H. frenatus.  相似文献   

2.
《Composite Interfaces》2013,20(3):133-147
Single fiber model composites consisting of epoxy resin matrix and differently sized glass fibers were investigated using pull-out tests, scanning electron microscopy (SEM), scanning force microscopy (SFM) and single fiber dynamic load test (SFDL). The inhomogeneous stress distribution along the embedded fiber length could be visualized by monitoring. SEM images showed either cohesive fracture or adhesive failure on pulled-out fibers with different sizings. The crack initiation and propagation were detected randomly and multiply distributed as the inhomogeneous interphase itself and depending strongly on the fiber-matrix model combination. The meniscus region acts as a material inhomogeneity and its appearence depends on the surface free energies of fiber and matrix and on the curing conditions of the resin. SFM in force modulation mode has visualized different interphase thicknesses and gradients of local stiffness. The SFDL test has been shown as a worthful tool for the comprehensive determination of fiber-matrix interaction.  相似文献   

3.
Bufo ictericus integument was investigated by stereoscopic, low vacuum scanning electron microscopy, transmission electron microscopy and light microscopy. The studies revealed, that the dorsal integument surface is rougher than ventral. Three types of projections are visualized: larger rounded verrucae, smaller conical cornified tubercles, and conical short spines. Prominent verrucae are observed on the dorsal surface, being flatter on the ventral surface. The tubercles are visualized only on the dorsal surface. The verrucae are separated by grooves that may contribute spreading and retention of the glandular secretion upon the integument. The pattern of the epidermal grooves is also important for water distribution, protecting the animal against desiccation. The epidermis is composed of a stratified epithelium with intraepithelial blood vessels, where keratinocytes predominate, but flask cells, and Merkel cells also occur. In the spongious dermis, cutaneous glands are visualized. The compact dermis is a series of alternating layers of bundles of collagenous fibers, and between spongious and compact dermis there are basophilic areas that correspond to Eberth-Katschenko layer. The dorsal and the ventral surfaces of B. ictericus are morphologically distinct. The integument structure is related to the physiology of each surface and represents an adaptation to habitat, reflecting a lifestyle of the animal.  相似文献   

4.
《Composite Interfaces》2013,20(5-6):347-359
Scanning electron microscopy (SEM), polarized light microscopy (PLM), and transmission electron microscopy (TEM) techniques have been used to characterize the normal surface and flank surface microstructure of a polyacrylonitrile (PAN)-based carbon fiber reinforced chemical vapor infiltrated (CVI) matrix carbon–carbon composite. Optical and SEM results indicate that the CVI deposit consists of two structures: an isotropic phase is present in the fiber bundle-bundle junctions and a second highly oriented lamellar structure is present in the intrabundle matrix. TEM shows that matrix platelets are highly parallel to the fiber axis and the crystallites of the matrix near the fiber surface exhibit better alignment than those farther away from fibers.  相似文献   

5.
In Rhinella ornata, the integument of different body regions was investigated using low-vacuum scanning electron and light microscopy through histochemical and immunohistochemical methods, and revealed the basic structure found in other anurans. Keratinocytes formed the keratinized squamous stratified epithelium, and flask cells occurred among the epidermal superficial layer. Just below the epidermis, the dermis was subdivided into a spongious dermis and a compact dermis. Mixed and granular glands were located in the spongious dermis, and myoepithelial cells surrounded their secretory portions. The Eberth-Katschenko (EK) layer occurred as basophilic areas between the spongious and compact dermis and throughout the spongious dermis. A series of alternating layers of bundles of collagenous fibers characterized the compact dermis, being firmly attached to a thin hypodermis. Regarding the morphological features, each integument region revealed distinct structural aspects. The dorsal integument was rougher than ventral, having conical tubercles and spines upon the verrucae. In the ventral and subgular regions, the slightly elevations are visualized, tubercles were absent but some spines occurred. The pelvic integument had a non-keratinized epidermis with an irregular profile and small poorly developed elevations. In addition, the EK layer was absent, and the presence of numerous blood vessels suggests its participation in water absorption and distribution. In the parotoid gland, the epidermis was similar to the dorsal integument; except that the reticular dermis was present, and contained three exocrine glandular types. Expression of cytokeratin was evident in the basal and intermediary layer, but absent in the cornified layer. Flask cells showed strong cytokeratin labeling. Consequently, the integument had the basic morphology, but exhibits regional characteristics, which may be related to the physiology of each surface.  相似文献   

6.
Fluorescence microscopy (FM) has recently been applied to the detection of airborne asbestos fibers that can cause asbestosis, mesothelioma and lung cancer. In our previous studies, we discovered that the E. coli protein DksA specifically binds to the most commonly used type of asbestos, chrysotile. We also demonstrated that fluorescent-labeled DksA enabled far more specific and sensitive detection of airborne asbestos fibers than conventional phase contrast microscopy (PCM). However, the actual diameter of the thinnest asbestos fibers visualized under the FM platform was unclear, as their dimensions were below the resolution of optical microscopy. Here, we used correlative microscopy (scanning electron microscopy [SEM] in combination with FM) to measure the actual diameters of asbestos fibers visualized under the FM platform with fluorescent-labeled DksA as a probe. Our analysis revealed that FM offers sufficient sensitivity to detect chrysotile fibrils as thin as 30–35 nm. We therefore conclude that as an analytical method, FM has the potential to detect all countable asbestos fibers in air samples, thus approaching the sensitivity of SEM. By visualizing thin asbestos fibers at approximately tenfold lower magnifications, FM enables markedly more rapid counting of fibers than SEM. Thus, fluorescence microscopy represents an advanced analytical tool for asbestos detection and monitoring.  相似文献   

7.
A multimodal nonlinear optical imaging system that integrates coherent anti-Stokes Raman scattering (CARS), sum-frequency generation (SFG), and two-photon excitation fluorescence (TPEF) on the same platform was developed and applied to visualize single cells and extracellular matrix in fresh carotid arteries. CARS signals arising from CH2-rich membranes allowed visualization of endothelial cells and smooth muscle cells of the arterial wall. Additionally, CARS microscopy allowed vibrational imaging of elastin and collagen fibrils which are also rich in CH2 bonds. The extracellular matrix organization was further confirmed by TPEF signals arising from elastin’s autofluorescence and SFG signals arising from collagen fibrils’ non-centrosymmetric structure. Label-free imaging of significant components of arterial tissues suggests the potential application of multimodal nonlinear optical microscopy to monitor onset and progression of arterial diseases.  相似文献   

8.
The method of atomic force microscopy (AFM) is used for the first time for morphological investigation of pathological changes in the extracellular matrix of skin connective tissue upon the prolapse of pelvic organs (common disorder among women). Skin samples of patients with clinically proven pelvic-organ prolapse and of patients that do not have any connective tissue related disease (control group) are investigated via AFM. The AFM study reveals that the extracellular matrix of the skin connective tissues from patients with pelvic-organ prolapse diverges from the normal in various organization levels including both micro- and nanotexture (packing of collagen fibers and fibrils, respectively). The results of AFM study of the normal and pathologically changed skin connective tissues are in good agreement with the data of clinical morphological analysis, which indicates the potential of AFM as an independent diagnostic tool.  相似文献   

9.
The present study aimed describing the ovaries of the sugarcane spittlebug Mahanarva fimbriolata which are meroistic telotrophic with nurse cells and oocytes located in the tropharium. SEM revealed paired ovaries located dorsolaterally around the intestine, and oocytes exhibiting shapes ranging from round (less developed) to elliptic (more developed), suggesting a simultaneous, although, asynchronous development. Based on histological data we classified the oocytes in stages from I to V. Stage I oocytes exhibit follicular epithelium with cubic and/or prismatic cells, fine cytoplasmic granules. Stage II oocytes present intercellular spaces in the follicular epithelium due to the incorporation of yolk elements from the hemolymph. Small granules are present in the periphery of oocytes while larger granules are observed in the center. Stage III oocytes are larger and intercellular spaces in the follicular epithelium are evident, as well as the interface between follicular epithelium and oocyte. Yolk granules of different sizes are present in the cytoplasm. During this stage, chorion deposition initiates. Stage IV oocytes exhibit squamous follicular cells and larger intercellular spaces when compared to those observed in the previous stage. The oocyte cytoplasm present granular and viscous yolk, the latter is the result of the breakdown of granules. Stage V oocytes exhibit a follicular epithelium almost completely degenerated, smaller quantities of granular yolk and large amounts of viscous yolk. Based on our findings we established the sequence of yolk deposition in M. fimbriolata oocyte as follows: proteins and lipids, which are first produced by endogenous processes in stages I and II oocytes. Exogenous incorporation begins in stage III. In stages I and II oocytes, lipids are also produced by follicular epithelial cells. The third element to be deposited is polysaccharides, mainly found as complexes. Therefore, the yolk present in the oocytes of this species consists of glycolipoproteins. Molecular weights of proteins present in M. fimbriolata oocytes ranged from 10 to 92 KDa, differently from vitellogenin, the most common protein present in insect oocytes, weighing approximately 180 KDa.  相似文献   

10.
The articulating surface of bones which ossify in mesenchyme, like the mandible, is covered by a layer of dense, fibrous tissue. The purpose of the present study was to examine the structure of the fibrous tissue on the surface of the articular surface of the temporal bone in the monkey. Young Rhesus monkeys (Macaca mulatta) were perfused with glutaraldehyde-paraformaldehyde. The specimens were demineralized in 0.5M EDTA. Small pieces of fibrous tissue and underlying bone were dissected out and processed for light and electron microscopy. The mandibular fossa is shallower and the articular eminence flatter in the monkeys as compared to humans. The articular part of the temporal bone is covered by a layer of avascular, soft tissue extending from the surface to the underlying bone. The tissue can be divided into three zones which gradually merge into one another. The zone facing the articular cavity consists of dense, fibrous tissue with layers of collagen fibers, oriented parallel to the articular surface, but at angles to each other. Fibers thought to be elastic fibers oriented parallel with the collagen fibers are also observed, particularly close to the surface, and their function is probably to impart resilience to the fibrous articular tissue. Between the fibers scattered cells with an ample rough endoplasmic reticulum are present. A thin layer of granular appearance is often observed on the surface. This layer may be of importance in joint lubrication. The second zone is more cell rich and the cells have long slender cellular processes and are surrounded by a dense collagenous matrix with an irregular orientation. These cells are probably precursor for the underlying cartilage but, not for the cells in the outer articular layer. In the third zone next to the bone the fibrous tissue gradually turns into cartilage. The cartilagenous zone is narrow, sometimes absent and is replaced by bone tissue. In some areas chondroclasts are observed, with forming osteons with osteoid seams. These observations indicate that remodeling is taking place and that cartilage is replaced by bone. The three zones observed correspond to findings in the mandibular condyle, but the zones are not as constant and distinct as in the condyle, and this reflects the adaptive role of the temporal bone in the growth of the temporomandibular joint.  相似文献   

11.
Scanning soft X-ray transmission microspectroscopy (STXM) and transmission electron microscopy (TEM) have been employed for a high-resolution morphological and chemical analysis of hair fibers from human, sheep and alpaca. STXM allows optimum contrast imaging of the main hair building blocks due to tuneable photon energy. Chemical similarities and deviations for the human hair building blocks as well as for the three investigated species are discussed on the basis of the local near-edge X-ray absorption fine structure (NEXAFS). The spectra of melanosomes corroborate the state-of-the-art model for the chemical structure of eumelanin. Complementary TEM micrographs reveal the occurrence of cortex sectioning in alpaca hair to some extent. A spectroscopic analysis for human hair cortex indicates low mass loss upon soft X-ray irradiation, but transformation of chemical species with decreasing amount of peptide bonds and increasing NEXAFS signal for unsaturated carbon–carbon bonds.  相似文献   

12.
This paper describes the results of the analysis of cortical rigidity in two round cell states: mitotic round cells and detached round cells after trypsinization using atomic force microscopy (AFM). These two states are primary cell events with dynamic morphological alterations in vitro. The trypsinized detached cells were fixed on the substrate of membrane anchoring oleyl surface. Fluorescent images taken by confocal laser scanning microscopy revealed diverse cell surface protrusions and cortical actin development in the round cells under different conditions. Although the cortical actin of these cells seemed to develop similarly, cortical rigidity of the trypsinized round cells showed greater stiffness than that of mitotic round cells. The elasticity measurements by AFM may detect invisible information about the maturation or strength of F-actin structures and such measurements may indicate that the strength of the actomyosin cortex would be higher in trypsinized round cells compared to mitotic cells. The mechanical properties can help provide better insights into the characteristics of the actin cytoskeleton network in vicinity of cell surface during dynamic morphological alterations.  相似文献   

13.
The venom apparatus of the endoparasitic wasp Pteromalus puparum (Hymenoptera: Pteromalidae) was studied with light and electron microscope and was subjected to the electrophoretic and immunohistochemical analyses. Typically its venom apparatus consists of an unbranched venom gland and a venom reservoir, which is associated with a Dufour gland. The venom gland is lined by a series of secretory units. Each secretory unit comprises a secretory cell and a duct cell. The secretory cell is associated with an end apparatus to collect its secretions into the gland lumen. Secretory cells in the venom gland are characterized by extensive rough endoplasmic reticulum and numerous electron-dense vesicles in the distal and middle parts. They also exhibit several secretory granules and vacuoles. The venom reservoir presents three distinct regions: an external layer, composed by numerous fine muscle fibers; an internal layer, represented by epithelial cell with large nucleus; and an intima portion, represented by thin and uniform organization. The morphological aspect of numerous well-developed organelles responsible for protein generation observed is in agreement with the electrophoretic and immunohistochemical results which reveal that the rich proteinaceous components are present in the venom gland and venom reservoir. The venom proteins are first mainly produced in the secretory unit of venom gland, then drained to the lumen through the end apparatus, and are finally collected and stored in the venom reservoir.  相似文献   

14.
The microstructure of isotactic polypropylene (iPP) has been investigated during different steps of the processing of commingled PP/unidirectional glass fiber composites. From wide angle x-ray scattering and differential scanning calorimetry analysis, complemented by density measurements, it can be concluded that the crystalline phase in both un-reinforced PP and composite materials is only constituted of the α phase. The morphology of the crystalline phase and the two-dimensional geometric arrangement of fibers within the matrix of commingled composites reinforced by 45, 60, and 75 wt% of fibers have also been investigated using optical microscopy. The composites exhibit heterogeneous morphology whatever the fiber content is. Moreover, large spherulites can be distinguished, but the presence of a transcrystalline phase around the fibers cannot be detected.  相似文献   

15.
In this work, a simple and effective method to modify the surface of single sisal fibers with G. xylinum was described. Single fiber tensile strength test, single fiber fragmentation test, thermal gravimetric analyses were conducted to assess the effects of different modification methods (unmodified, NaOH treatment and BC treatment). Fourier transform infrared spectroscopy, scanning electron microscopy and water uptake experiments were employed to characterize the resulting interfacial adhesion. It was shown that BC treatment produced better reinforced polymer composites with improved mechanical and long-term properties. The results also elucidated that BC nanofibrils formed a dense three dimensional network on single sisal fibers covering the roughened surface and filling the grooves and other surface ‘defects’ caused by NaOH modification in addition to its exposed hydroxyl groups to form hydrogen bonds with sisal fiber, all contributed to enhanced mechanical properties of sisal fibers as well as the better binding between sisal fibers and resin matrix. Moreover, this work also confirmed that internal geometrical and morphological differences exist in sisal fibers and this result is insightful for future natural fiber research about the importance of careful selection of fibers for consistent comparisons.  相似文献   

16.
High density heterostructures of carbon nanotubes encapsulated single crystalline tin nanowires have been characterized by Raman spectromicroscopy. The morphology, composition and structure of the synthesized nanoheterostructures were examined by using scanning electron microscopy, transmission electron microscopy. The Raman spectra obviously manifest the crystalline nano-graphite within amorphous carbon walls in the heterostructures. The Raman image reproduces the pristine heterostructures of the CNTs as seen in SEM image, which illustrate the single nanowires oriented uniformly grown on micro-graphitic fibers. It was found that the resultant heterostructures are luminescent which was attributed to crystalline nano-graphite embedded in the amorphous carbon matrix, which is a consequence of excitons localization within an increasing number of sp2 rich clusters. The contrast in the Raman image reflects nonuniform distribution of the graphite cluster size which acts as the radiative centers. The luminescent property was reviewed. The enhanced Raman spectra and luminescent property by the well-defined tin nanowires inside the heterostructures was revealed.  相似文献   

17.
Previous studies on legume pulvini suggest that the vascular system plays an important role in the redistribution of ions and transmission of stimuli during leaf's movements. However, the number of anatomical and ultrastructural studies is limited to few species. The aim of this paper is to investigate the structure and cellular features of the pulvinus vascular system of nine legume species from Brazilian cerrado, looking for structural traits pointing to its participation in the leaf's movements. Samples were excised from the medial region of opened pulvinus of Bauhinia rufa, Copaifera langsdorffii, Senna rugosa (Caesalpinioideae), Andira humilis, Dalbergia miscolobium, Zornia diphylla (Faboideae), Mimosa rixosa, Mimosa flexuosa and Stryphnodendron polyphyllum (Mimosoideae), and were prepared following light microscopy, transmission electron microscopy and histochemical standard techniques. The vascular system occupies a central position, comprises phloem and xylem and is delimited by a living sheath of septate fibers in all the species studied. This living cells sheath connects the cortex to the vascular tissues via numerous plasmodesmata. The absence of fibers and sclereids, the presence of phenolic idioblasts and the abundance and diversity of protein inclusions in the sieve tube members are remarkable features of the phloem. Pitted vessel elements, parenchyma cells with abundant cytoplasm and living fibriform elements characterize the xylem. The lack of lignified tissues and extensive symplastic continuity by plasmodesmata are remarkable features of the vascular system of pulvini of the all studied species.  相似文献   

18.
Bivalve filter feeders are sessile animals that live in constant contact with water and its pollutants. Their gill is an organ highly exposed to these conditions due to its large surface and its involvement in gas exchanges and feeding. The bivalve Mytella falcata is found in estuaries of Latin America, on the Atlantic as well as the Pacific Coast. It is commonly consumed, and sometimes is the only source of protein of low-income communities. In this study, gill filaments of M. falcata were characterized using histology, histochemistry and transmission electron microscopy for future comparative studies among animals exposed to environmental pollutants. Gill filaments may be divided into abfrontal, intermediate and frontal zones. Filaments are interconnected by ciliary discs. In the center of filaments, haemocytes circulate through a haemolymph vessel internally lined by an endothelium and supported by an acellular connective tissue rich in polysaccharides and collagen. The abfrontal zone contains cuboidal cells, while the intermediate zone consists of a simple squamous epithelium. The frontal zone is composed of five columnar cell types: one absorptive, mainly characterized by the presence of pinocytic vesicles in the apical region of the cell; one secretory, rarely observed; and three ciliated with abundant mitochondria. All cells lining the filament exhibit numerous microvilli and seem to absorb substances from the environment. PAS staining was observed in mucous cells in the frontal and abfrontal zones. Bromophenol blue allowed the distinction of haemocytes and detection of a glycoprotein secretion in the secretory cells of the frontal region. The characteristics of M. falcata gill filaments observed in this study were very similar to those of other bivalves, especially other Mytilidae, and are suitable for histopathological studies on the effect of water-soluble pollutants.  相似文献   

19.
In this investigation healthy rabbit crystalline lenses were characterized by atomic force microscopy (AFM). The lenses were cut in slices with thickness with 1mm and thus, put after cortex distinct regions of nucleus and cortex for AFM examination. AFM analysis were carried out using a PicoSPM I operating in Mac Mode. We obtained topographic images of rabbit lenses and a quantitative analysis of the width and height of fibers for nucleus and cortex regions. The longitudinal section analysis of fibers in the nucleus region indicated structures with an average width of 200nm and average height of 200nm. The intershells distance was determined as 4microm. Fiber cell cross-section dimensions, longitudinal and transverse widths, could be estimated in these regions from the AFM images. Structures with average widths as small as 1.0microm are observed in the nucleus; the intershell distance is 4.0microm. In cortical regions, hexagonal structures with average longitudinal and transverse widths of 5.0mum and 3.0mum, respectively, were identified. Three-dimensional images of tissue sections with resolution on a nanometer scale were obtained. The potential of AFM analysis for characterizing healthy and pathologic lens tissues is discussed.  相似文献   

20.
The stromal microenvironment is pivotal to prostate physiology and malign transformation. Diabetes leads to testosterone withdrawal and affects the prostate stromal compartment and smooth muscle cells in a similar way to that observed after castration. However the response of these cells and their involvement in extracellular matrix remodeling is not satisfactorily understood. We investigated the changes caused in the short term (one week) by alloxan-induced diabetes in the stromal components of the rat ventral prostate (VP) with an emphasis on morphological alterations of stromal cells, their conversion to a myofibroblast phenotype and the remodeling of extracellular matrix and the influence of insulin therapy. Adult male Wistar rats were assigned into untreated diabetic (n=12), insulin-treated (n=8) diabetic and control (n=10) groups. Diabetes was induced by means of the injection of alloxan (40 mg/kg b.w.), while the control animals received saline solution only. Insulin (5 UI) was administered daily for one week after diabetes diagnosis. Testosterone and estrogen plasma levels were determined. VP was analyzed using transmission electron microscopy. The main stromal cells were identified by means of light microscopy, using immunocytochemistry for specific markers - vimentin for fibroblasts, α-actin for smooth muscle cells (smc) and vimentin/calponin for myofibroblasts, following the estimation of their relative frequency and absolute volume by means of stereology. After one week diabetes led to a marked decrease in testosterone levels and an atrophy of about 35% in the VP. The relative frequency of smc and collagen fibers increased in the VP of diabetic rats but their absolute weight remained unchanged. Experimental diabetes promptly altered smc morphology which assumed at the ultrastructural level a shrunken appearance with the approximation of cytoplasmic dense bodies and also exhibited a decreased immunoreactivity to calponin. The conversion of stromal cells to a myofibroblast phenotype did not occur in alloxan-induced diabetes, as evaluated by double immunoreaction to calponin and vimentin. Insulin treatment maintained testosterone levels and preserved at least partly the cell morphology and collagen fiber organization of the prostate stroma in short-term diabetes. The apparent collagen increase observed by means of microscopic analysis in the stromal prostate compartment in the short term after diabetes is mainly associated with gland atrophy and does not involve the formation of new collagen fibers, the generation of myofibroblast-like cells or the acquisition of a secretory phenotype by stromal cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号