首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The flow in a vessel able to regulate its lumen under the action of mechanical stimuli, the variation of the pressure difference between the inner and outer surfaces of the vessel wall and the blood flow velocity, is described. This ability is determined by the effect of the mechanical stimuli on the degree of activation of smooth muscle cells in the vessel wall. In order to describe the active properties of the wall, two controlling parameters which have the sense of the concentration of free calcium ions in the cytoplasm of smooth muscle cells and the average concentration of nitric oxide in the smooth muscle layer, are introduced. The approach proposed makes it possible to estimate both the degree of participation of each mechanical stimulus in vessel lumen regulation and the result of interaction of two differently directed vascular responses. The calculations show that both the magnitude and direction of the radius response to a mechanical stimulus depend on the initial state of the vessel wall. The role of the vessel wall sensitivity to mechanical stimuli in the stabilization of the blood flow-rate and the variation of the radius along the vessel is considered.  相似文献   

2.
An analysis model of pulsatile blood flow in arteries   总被引:3,自引:0,他引:3  
IntroductionTheperiodicallypulsatilebloodflowinthearterycausesthecircumferentialandaxialmotionoftheelasticbloodvesselandinturntheoscillationofthevesselaffectsthatofthebloodflow .Womersley[1]resolvedsuccessfullythisfluid_solidcouplingproblembysolvingbothlinearNavier_Stokesequationsandthemotionequationsofthethin_walledelastictubeandgainedtheexpressionsofthebloodflowvelocitiesandthevasculardisplacements.Histheoryhasbeenthebasisforthequantitativeanalysisoftherelationshipofthearterialstructureandi…  相似文献   

3.
摘要:为了计算动脉粥样硬化和局部斑块形成的堵塞对血管壁工作状态的影响,本文根据血液流动的连续性方程、运动方程及管壁运动方程,在给定了血压波形函数的基础上,求得了狭窄血管管壁的径向位移及环向应力。分析了不同狭窄程度对血管壁变形及应力的影响;给出了不同狭窄情况下及局部斑块硬化程度不同时,血管植入支架所需的作用力。从而计算出了植入支架后血管壁的径向位移及应力状态。本文的研究结果可供临床上对狭窄血管植入支架后的变形与受力分析,和支架的正确安放参考,可避免发生堵塞严重或血管过渡硬化时,由于安放支架不当而使发生血管破裂的医疗事故。  相似文献   

4.
The correlation problem between the blood flow and the motion of vessel wall in the mammalian circulatory system is discussed in this paper. Supposing the blood flow is under the stable oscillatory condition, a set of formulas for velocity distribution, pressure distribution, displacement of vessel wall and constraining stress are obtained. Kuchar’s formulas are extended from steady flow to unsteady oscillatory flow by means of the formulas obtained in this paper. The problem of elasticity effect of vessel wall is also discussed.  相似文献   

5.
An acoustic model of a larger human blood vessel is developed. This model takes into account the main features of the acoustic generation and propagation of noise in the human chest from the source (turbulent pressure fluctuations in blood flow) to a receiver resting on the skin, and allows the consideration of a simple stenotic narrowing in the vessel. The low Mach number turbulent wall pressure models of Corcos, Chase, Ffowcs Williams, and Smol'yakov and Tkachenko are used to describe random sources in the vessel. The relationships obtained permit one to analyse the dependence of the resultant acoustic field in the thorax on the parameters of the blood flow and the vessel, and show the possibility of finding characteristic signs of the presence of a stenosis by comparison of noise fields from intact and diseased arteries. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
本文求解局部缓慢扩张动脉管中血液振荡流的基本方程,得到血管内血液的流速与压力梯度的关系。通过导出压力梯度沿局部扩张管轴向的变化特性。建立利用扩张段上游血管均匀段中心流速波形确定局部扩张管中血液流的速度和切应力分布的方法,文章以人体颈动脉余弦扩张为例进行分析。详细讨论了局部扩张对血管壁切应力及其梯度分布的影响。数值结果表明,在与刚性均匀管中管壁切应力沿轴向保持不变不同,在局部扩张段,管壁切应力将随着血管半径的增大而减小,因而管壁切应力梯度一般不为零,甚至在某些位置达到相当大的数值。另外,随着血管扩张程度的增加,管壁切应力还将进一步减小,而且管壁切应力梯度也将进一步增大,血管扩张导致管壁切应力的这些变化将直接影响血管壁的结构和功能,使其产生适应性的变化。  相似文献   

7.
Estimates are presented for the effect of susceptibility of the inner surface of the blood vessel wall to shear stress on changes in diameter and volume blood flow rate. The model of thin-walled vessel with radius controlled by two parameters is used. The effect of rheological factors, hematocrit, and oxygen content in blood on the value of vessel response to a change in shear stress is considered. The estimates showed that the contribution of the vessel response in question to a change in blood volume flow rate amounts tens per cent. The influence of rheological (Fahraeus and Fahraeus-Lindqvist) effects on flow rate lies within several per cent. The role of the vessel response considered increases with anaemia: at low hematocrit its contribution to increase in flow rate exceeds 10%. Variation of oxygen concentration within the normal range has almost no effect on the hemodynamic parameters. With hypoxia, on the contrary, the participation of this response on changes in flow rate weakens: in severe hypoxia decrease in blood flow rate owing to a change in oxygen concentration equals approximately 9%.  相似文献   

8.
平行平板流动腔系统是研究切应力对细胞影响的体外实验装置之一。前期研究发现,流动腔的高度存在一个最佳高度,使用这个高度可以有效地减小或避免由于装配所引起的高度误差对切应力的影响。为了获得这一最佳高度,本文使用数值方法研究了平行平板流动腔的几何尺寸、流体粘度与集中液阻之间的关系,并拟合得到了集中液阻的函数关系式。利用液阻关系式和切应力计算公式,求得了对底部切应力影响最小的最佳高度的表达式。同时,研究还发现,对于相同的底部切应力,当高度取最佳高度时,所需的入(出)口压差最小。这样在流动腔底部沿轴向的压力梯度也就越小,沿轴向不同位置之间的压力差别也越小,这将有利于细胞力学实验结果之间的比较。  相似文献   

9.
THECOUPLEMOTIONBETWEENVESSELWALLANDBLOODINTHEENTRANCEREGIONOFATAPEREDVESSELCenRen-jing(岑人经)QinChan(秦婵)TanZhe-dong(谭哲东)(SouthC...  相似文献   

10.
Experiments were conducted for the flow in a straight-walled 3D diffuser fed by a fully developed turbulent duct flow. Previous work found that this diffuser has a stable 3D separation bubble whose configuration is affected by the secondary flows in the upstream duct. Dielectric barrier discharge plasma actuators were used to produce low-momentum wall jets to determine if the separation behavior could be modified by weak forcing. Actuators producing a streamwise force along the wall where separation occurred in the baseline flow had a relatively small effect. However, spanwise acting plasma actuators that produced a pair of streamwise vortices in the inlet section of the diffuser had a strong effect on the diffuser pressure recovery. The diffuser performance could be either improved or degraded depending on the actuation parameters, including the actuator modulation frequency, duty cycle, and drive voltage. Velocity profile measurements in the diffuser inlet showed that the streamwise vortices affect the uniformity of the streamwise mean velocity accounting for some of the performance changes. However, phase-locked hotwire measurements at the diffuser exit indicate that the periodic nature of the forcing also plays an important role for cases with enhanced pressure recovery.  相似文献   

11.
The present paper is concerned with the flow in a two-dimensional channel whose wall is partially compliant. The flow field is calculated by the finite-difference method. Results are as follows: (1) When the upstream condition is given by steady flow (Reynolds number Re = 50), a compliant part of the wall oscillates with a frequency nearly equal to the characteristic frequency of the elastic wall. Absolute values of the pressure drop across the compliant part become small compared with those of the plane Poiseuille flow with wholly rigid walls. This ensures under physiological conditions that the blood can be transported more easily toward distal parts due to the compliance of vessel walls. (2) When the upstream condition is given by a pulsatile flow (Womersley number α = 8), interaction arises between characteristic frequency of the wall and basic frequency of the main stream near the compliant wall. As the basic frequency of pulsatile flow decreases, absolute values of mean pressure, which drop across the compliant wall, also become small compared with those of pulsatile flow between wholly rigid walls.  相似文献   

12.
We study the flow of a viscous incompressible fluid through a long and narrow elastic tube whose walls are modeled by the Navier equations for a curved, linearly elastic membrane. The flow is governed by a given small time dependent pressure drop between the inlet and the outlet boundary, giving rise to creeping flow modeled by the Stokes equations. By employing asymptotic analysis in thin, elastic, domains we obtain the reduced equations which correspond to a Biot type viscoelastic equation for the effective pressure and the effective displacement. The approximation is rigorously justified by obtaining the error estimates for the velocity, pressure and displacement. Applications of the model problem include blood flow in small arteries. We recover the well-known Law of Laplace and provide a new, improved model when shear modulus of the vessel wall is not negligible. To cite this article: S. ?ani?, A. Mikeli?, C. R. Mecanique 330 (2002) 661–666.  相似文献   

13.
The effects of swirling flow on the flow field in 45° end-to-side anastomosis are experimentally investigated using a particle image velocimetry technique to reveal fluid dynamic advantages of swirling flow in the vascular graft. Non-swirling Poiseuille inlet flow unnecessarily induces pathological hemodynamic features, such as high wall shear stress (WSS) at the ‘bed’ side and large flow separation at the ‘toe’ side. The introduction of swirling flow is found to equalize the asymmetric WSS distribution and reduces the peak magnitude of WSS. In particular, the intermediate swirling intensity of S = 0.45 induces the most uniform axial velocity and WSS distributions compared with weaker or stronger swirling flows, which addresses the importance of proper selection of swirling intensity in the vascular graft to obtain optimum flow fields at the host vessel. In addition, swirling flow reduces the size of flow separation because it disturbs the formation of Dean-type vortices in secondary flow and inhibits secondary flow collision. The beneficial fluid dynamic features of swirling flow obtained in this study are helpful for designing better vascular graft suppressing pathological hemodynamic features in the recipient host vessel.  相似文献   

14.
Hemodynamic stresses are involved in the development and progression of vascular diseases. This study investigates the influence of mechanical factors on the hemodynamics of the curved coronary artery in an attempt to identify critical factors of non‐Newtonian models. Multiphase non‐Newtonian fluid simulations of pulsatile flow were performed and compared with the standard Newtonian fluid models. Different inlet hematocrit levels were used with the simulations to analyze the relationship that hematocrit levels have with red blood cell (RBC) viscosity, shear stress, velocity, and secondary flow. Our results demonstrated that high hematocrit levels induce secondary flow on the inside curvature of the vessel. In addition, RBC viscosity and wall shear stress (WSS) vary as a function of hematocrit level. Low WSS was found to be associated with areas of high hematocrit. These results describe how RBCs interact with the curvature of artery walls. It is concluded that although all models have a good approximation in blood behavior, the multiphase non‐Newtonian viscosity model is optimal to demonstrate effects of changes in hematocrit. They provide a better stimulation of realistic blood flow analysis. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
Pressure-driven Stokes flow through a circular tube with a permeable wall is considered as a model of blood flow through a capillary vessel. Fluid penetrates the tube wall over a test section according to Starling law relating the normal fluid velocity to the transmural pressure defined as the difference between the wall and the uniform ambient pressure. The problem is formulated using the integral representation for Stokes flow, and the solution is computed with high accuracy using a boundary-element method for specified values of the wall permeability and percentage of fluid escaping through the walls. The results illustrate the structure of the flow and validate the predictions of a model based on the assumption of locally unidirectional flow for sufficiently small permeability.  相似文献   

16.
Ali  A.  Hussain  M.  Anwar  M. S.  Inc  M. 《应用数学和力学(英文版)》2021,42(11):1675-1684

In this study, a mathematical model is formulated to examine the blood flow through a cylindrical stenosed blood vessel. The stenosis disease is caused because of the abnormal narrowing of flow in the body. This narrowing causes serious health issues like heart attack and may decrease blood flow in the blood vessel. Mathematical modeling helps us analyze such issues. A mathematical model is considered in this study to explore the blood flow in a stenosis artery and is solved numerically with the finite difference method. The artery is an elastic cylindrical tube containing blood defined as a viscoelastic fluid. A complete parametric analysis has been done for the flow velocity to clarify the applicability of the defined problem. Moreover, the flow characteristics such as the impedance, the wall shear stress in the stenotic region, the shear stresses in the throat of the stenosis and at the critical stenosis height are discussed. The obtained results show that the intensity of the stenosis occurs mostly at the highest narrowing areas compared with all other areas of the vessel, which has a direct impact on the wall shear stress. It is also observed that the resistive impedance and wall shear pressure get the maximum values at the critical height of the stenosis.

  相似文献   

17.
The influence of the upper wall on the die entry flow of viscoeleastic fluids was investigated experimentally. Aqueous solutions of Separan AP-30 were pushed out by a compressed gas pressure through a capillary attached to the bottom of a reservoir having a height-adjustable upper wall. The driving gas pressure, the flow rate and the pressure at the center of the upper wall were measured and the flow patterns in the entry region above the inlet section of the capillary were observed. Flow rate measurements under the condition of constant driving pressure reveal that the maximum height of the upper wall required to reduce the flow rate is much larger for viscoelastic fluids than for Newtonians, and that this effect of the upper wall becomes more conspicuous with increasing driving pressure. What is curious is that under some conditions the flow rate is larger for a moderate upper wall height than for an infinite. These phenomena are shown to be attributed to the increasing and the reducing effects of the entry pressure loss by the upper wall. The latter effect may be called a new type of pressure-loss reduction phenomenon of viscoelastic fluids. The observation of the flow and the measurement of the pressure at the upper wall center show that typical flow patterns of the die entry flow of viscoelastic fluids are responsible for the far greater pressure loss than for Newtonians, and that the entry pressure loss for a spiralling flow is a little smaller than for the other two types even at an equal driving pressure.  相似文献   

18.
血流动力学数值模拟与动脉粥样硬化研究进展   总被引:4,自引:0,他引:4  
血流动力学因素被认为与动脉粥样硬化等病理改变密切相关。目前血流动力学数值模拟的对象,主要集中于分支动脉、弯曲动脉以及因血管内膜增生而导致的局部狭窄动脉,这些都是动脉粥样硬化多发的病灶部位。精确的血流动力学数值模拟,必须依赖于解剖精确的血管几何模型和生理真实的血流与管壁有限变形的非线性瞬态流-固耦合。只有在“虚拟血液流动”的基础上,综合考虑血管内的壁面剪应力、粒子滞留时间和氧气的跨血管壁传输等多种因素,血流动力学的数值模拟才能真正有助于人们理解动脉粥样硬化的血流动力学机理,才有可能应用于有关动脉疾病的外科手术规划中。   相似文献   

19.
The present study investigates blood flow in a pulmonary artery. The aim is to gain a better understanding of offset value in vascular circulation through a two‐dimensional analysis of the Navier–Stokes equations. In this study, the hemodynamics in a blood vessel with truncated outlets at which constant pressure is specified is examined. To simplify the analysis, the vessel walls are regarded as being rigid. In quadratic elements, the streamline upwind Petrov–Galerkin finite element model is employed to simulate the incompressible Newtonian blood flow. The adopted finite element model introduces artificial damping terms solely in the streamline direction. With these terms added to the formulation, the discrete system is enhanced while solution accuracy is maintained without deterioration due to numerical diffusion errors. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

20.
姬长金  贺缨 《力学学报》2012,44(3):591-599
Willis环是大脑侧枝循环的重要组成部分, 研究其血流动力学特性以及氧输运规律对脑缺血疾病的认知和预防有着非常重要的作用. 该文旨在利用一维血流动力学模型模拟整个Willis环的流量变化和压力分布, 并建立动脉内氧输运的一维模型以模拟Willis 环内氧分压的变化规律, 为研究脑组织内血液流动和氧输运打下基础. 首先, 基于弹性圆管内的一维非线性流动方程和状态方程建立血流动力学模型, 在一维对流扩散方程的基础上, 考虑由管腔向壁面的扩散和壁面细胞的新陈代谢消耗推导出氧输运特性方程. 通过 Lax-Wendroff两步法对血流动力学方程进行离散, 而在进行对流扩散方程的离散时, 则运用迎风格式. 通过数值计算得到了正常情况下Willis环各个血管任意位置的流量、压力和氧分压的变化曲线, 正常情况下各个位置的氧分压处于稳定的平衡状态. 最后, 还通过此模型进一步模拟了右侧颈内动脉狭窄对各个血管内流动的影响. 当狭窄程度达到80%时, 中脑动脉的流量和压力会明显下降, 造成其供应区域的血流减少. 同时, Willis环右侧血管内的氧分压会大大降低, 而左侧血管的氧分压会出现上升趋势, 但幅度要小于右侧血管降低的幅度.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号