首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 15 毫秒
1.
In the last two decades, the problem of computing the elastic energy of phase transforming materials has been studied by a variety of research groups. Due to the non-quasiconvexity of the underlying multi-well landscape, different relaxation methods have been used in order to estimate the quasiconvex envelope of the energy density, for which no explicit expression is known at present.This paper combines a recently developed lamination bound for monocrystalline shape memory alloys which relies on martensitic twinned microstructures with the work of Smyshlyaev and Willis [1998a. A ‘non-local’ variational approach to the elastic energy minimization of martensitic polycrystals. Proc. R. Soc. London A 454, 1573–1613]. As a result, a lamination upper bound for n-variant polycrystalline martensitic materials is obtained.The lamination bound is then compared with Reuß- and Taylor-type estimates. While, for given volume fractions, good agreement of lamination upper and convexification lower bounds is obtained, a comparison using energy-minimizing volume fractions computed from the various bounds yields larger differences. Finally, we also investigate the influence of the polycrystal's texture. For a strong ellipsoidal texture, we observe even better agreement of upper and lower bounds than for the case of isotropic statistics.  相似文献   

2.
In this paper, we examine the influence of thermomechanical coupling on the behavior of superelastic shape memory alloys subjected to cyclic loading at different loading rates. Special focus is given to the determination of the area of the stress-strain hysteresis loop once the material has achieved a stabilized state. It is found that this area does not evolve monotonically with the loading rate for either transient or asymptotic states. In order to reproduce this observation analytically, a new model is developed based on the ZM model for shape memory alloys which was modified to account for thermomechanical coupling. The model is shown to predict the non-monotonic variation in hysteresis area to good accord. Experimentally observed variations in the temperature of SMA test samples are also correctly reproduced for lower strain rates.  相似文献   

3.
The stress-strain isothermal hysteresis loops due to the incomplete martensitic transformation are analysed for Ti-Ni shape memory alloys. Experiments show the existence of two distinct yield lines for phase transition; one for the forward transformation austenitemartensite (AM), the other for the reverse transformation MA. The tensile behaviour of single crystals with only one yield line (AM) [1] can be considered as an ideal case. An extension of a thermodynamic model for pseudoelasticity [2] allows these two yield lines to be taken into account.
Sommario Per leghe Ti-Ni con memoria di forma vengono analizzati i cicli di isteresi isotermici tensione-deformazione prodotti da una incompleta trasformazione martensitica. Gli esperimenti mostrano l'esistenza di due distinte linee di snervamento per la transizione di fase, una verso la trasformazione austenitemartensite (AM), l'altra per la trasformazione inversa MA. Il comportamento a trazione di un singolo cristallo con una sola linea di snervamento (AM) [1], può essere considerato un caso ideale. L'estensione ad un modello termodinamico pseudo-elastico [2] consente di analizzare queste due linee di snervamento.
  相似文献   

4.
Certain alloys such as In-Tl, Ni-Ti, Ag-Cd or Cu-Al-Ni display remarkable mechanical properties such as the shape memory effect or pseudo-elasticity. This behaviour is related to a solid-solid phase transformation which leads to a complicated microscopic arrangement of different phases. In recent studies such microstructures have been analyzed by the minimization of elastic energy. We discuss the influence of additional surface energy terms on the existence of stress-free microstructures both in the nonlinear and a geometrically linear setting.
Sommario Certe leghe come quelle di In-Tl, Ni-Ti, Ag-Cd o Cu-Al-Ni mostrano proprietà meccaniche notevoli quali la memoria di forma o la pseudoelasticità. Questo comportamento è determinato da una trasformazione di fase solido-solido che conduce a complicati arrangiamenti a livelo microscopico. In studi recenti tali microstrutture sono state analizzate attraverso la minimizzazione dell'energia elastica. Noi discutiamo l'influenza di termini addizionali di energia superficiale sull'esistenza di microstrutture in uno stato naturale sia in un contesto lineare che non lineare.
  相似文献   

5.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号