首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dynamic processes involving the P(4) cage coordinated to transition metal fragments were observed for the mononuclear complex trans-[Ru(dppm)(2)(H)(η(1)-P(4))]BF(4) and for the bimetallic derivative trans-[Ru(dppm)(2)(H)(μ ,η(1:2)-P(4)){Pt(PPh(3))(2)}]BF(4) as demonstrated by NMR experiments and DFT calculations.  相似文献   

2.
We have investigated the effect of complexation of different phosphorus ligands on the stability, solid state structure, and spectroscopic properties (NMR, IR, UV-vis) of a 5,15-diphenyl-substituted ruthenium porphyrin, (MeOH)Ru(II)(CO)(DPP) 2 [DPP = 5,15-bis(3',5'-di-tert-butyl)phenyl-2,8,12,18-tetraethyl-3,7,13,17-tetramethylporphyrin]. The ligands used are PPh(3), diphenyl(phenylacetenyl)phosphine (DPAP), bis(diphenylphosphino)acetylene (DPPA), tris(phenylacetenyl)phosphine [(PA)(3)P], and diethyl (phenylacetenyl)phosphonite [PAP(OEt)(2)]. The mono-phosphine complexes (PR(3))Ru(II)(CO)(DPP) are readily formed in solution in quantitative yields. The complexes display association constants ranging from 1.2 x 10(4) M(-1) for PPh(3) to 4.8 x 10(6) M(-1) for PAP(OEt)(2). The weak association of PPh(3) does not correlate with its pK(a), delta((31)P), or cone angle value and is attributed to steric effects. Due to their kinetic lability, which is shown by 2D NMR spectroscopy, and the weakening of the carbonyl ligand via a trans effect, the mono-phosphine complexes could not be isolated. IR spectroscopy gives the relative order of pi-acceptor strength as PPh(3) < DPAP, DPPA < (PA)(3)P < PAP(OEt)(2), whereas the relative order of the sigma-donor strength is PPh(3) < (PA)(3)P < DPAP, DPPA < PAP(OEt)(2), based on the calculated pK(a) values and on the (31)P((1)H) NMR chemical shifts of the ligands. The chemical shift differences in the (31)P9(1)H)) NMR spectra upon ligand binding display a linear correlation with the calculated pK(a) values of the protonated ligands HPR(3)(+); we propose that the pK(a), and probably other electronic properties, of a specific phosphorus ligand can be estimated on the basis of the chemical shift difference Deltadelta((31)P) upon complexation to a metalloporphyrin. The bis-phosphine complexes can be isolated in pure form by crystallization from CHCl(3)-MeOH solutions using excess ligand. Association of the second ligand is in the same order of magnitude as the first binding for the phosphines, but the second phosphonite binding is decreased by a factor of about 100. The solid state structures show only marginal differences in the geometrical parameters. The calculated and the crystallographic cone angles of the ligands generally do not match, apart from the values obtained for PAP(OEt)(2).  相似文献   

3.
The Fe and Ru phosphine-borane complexes CpM(CO)2PPh2 x BH3 (1, M = Fe, 4, M = Ru) were synthesized utilizing the reaction of the phosphine-borane anion Li[PPh2 x BH3] with the iodo complexes CpM(CO)2I. The Fe complex 1 reacted with PMe3 to yield CpFe(CO)(PMe3)(PPh2 x BH3) (2) and CpFe(PMe3)2(PPh2 x BH3) (3) whereas the Ru species 4 gave only CpRu(CO)(PMe3)(PPh2 x BH3) (5). The complexes 1-5 were characterized by 1H, 11B, 13C and 31P NMR spectroscopy, MS, IR and X-ray crystallography for 1 to 4, and EA for 1, 2 and 4. The reactivity of 1 and 4 towards PPh2H x BH3 was explored. Although no stoichiometric reactions were detected under mild conditions, both 1 and 4 were found to function as dehydrocoupling catalysts to afford Ph2PH x BH2 x PPh2 x BH3 in the melt at elevated temperature (120 degrees C). The carbonyl Fe2(CO)9 also functioned as a dehydrocoupling catalyst under similar conditions. Complex 1 and Fe2(CO)9 represent the first reported active Fe complexes for the catalytic dehydrocoupling of phosphine-borane adducts.  相似文献   

4.
A series of ruthenium(II) acetonitrile, pyridine (py), carbonyl, SO2, and nitrosyl complexes [Ru(bdmpza)(O2CR)(L)(PPh3)] (L = NCMe, py, CO, SO2) and [Ru(bdmpza)(O2CR)(L)(PPh3)]BF4 (L = NO) containing the bis(3,5-dimethylpyrazol-1-yl)acetato (bdmpza) ligand, a N,N,O heteroscorpionate ligand, have been prepared. Starting from ruthenium chlorido, carboxylato, or 2-oxocarboxylato complexes, a variety of acetonitrile complexes [Ru(bdmpza)Cl(NCMe)(PPh3)] (4) and [Ru(bdmpza)(O2CR)(NCMe)(PPh3)] (R = Me (5a), R = Ph (5b)), as well as the pyridine complexes [Ru(bdmpza)Cl(PPh3)(py)] (6) and [Ru(bdmpza)(O2CR)(PPh3)(py)] (R = Me (7a), R = Ph (7b), R = (CO)Me (8a), R = (CO)Et (8b), R = (CO)Ph) (8c)), have been synthesized. Treatment of various carboxylato complexes [Ru(bdmpza)(O2CR)(PPh3)2] (R = Me (2a), Ph (2b)) with CO afforded carbonyl complexes [Ru(bdmpza)(O2CR)(CO)(PPh3)] (9a, 9b). In the same way, the corresponding sulfur dioxide complexes [Ru(bdmpza)(O2CMe)(PPh3)(SO2)] (10a) and [Ru(bdmpza)(O2CPh)(PPh3)(SO2)] (10b) were formed in a reaction of the carboxylato complexes with gaseous SO2. None of the 2-oxocarboxylato complexes [Ru(bdmpza)(O2C(CO)R)(PPh3)2] (R = Me (3a), Et (3b), Ph (3c)) showed any reactivity toward CO or SO2, whereas the nitrosyl complex cations [Ru(bdmpza)(O2CMe)(NO)(PPh3)](+) (11) and [Ru(bdmpza)(O2C(CO)Ph)(NO)(PPh3)](+) (12) were formed in a reaction of the acetato 2a or the benzoylformato complex 3c with an excess of nitric oxide. Similar cationic carboxylato nitrosyl complexes [Ru(bdmpza)(O2CR)(NO)(PPh3)]BF4 (R = Me (13a), R = Ph (13b)) and 2-oxocarboxylato nitrosyl complexes [Ru(bdmpza)(O2C(CO)R)(NO)(PPh3)]BF4 (R = Me (14a), R = Et (14b), R = Ph (14c)) are also accessible via a reaction with NO[BF4]. X-ray crystal structures of the chlorido acetonitrile complex [Ru(bdmpza)Cl(NCMe)(PPh3)] (4), the pyridine complexes [Ru(bdmpza)(O2CMe)(PPh3)(py)] (7a) and [Ru(bdmpza)(O2CC(O)Et)(PPh3)(py)] (8b), the carbonyl complex [Ru(bdmpza)(O2CPh)(CO)(PPh3)] (9b), the sulfur dioxide complex [Ru(bdmpza)(O2CPh)(PPh3)(SO2)] (10b), as well as the nitrosyl complex [Ru(bdmpza)(O2C(CO)Me)(NO)(PPh3)]BF4 (14a), are reported. The molecular structure of the sulfur dioxide complex [Ru(bdmpza)(O2CPh)(PPh3)(SO2)] (10b) revealed a rather unusual intramolecular SO2-O2CPh Lewis acid-base adduct.  相似文献   

5.
The dynamic behavior in solution of eight mono-hapto?tetraphosphorus transition metal-complexes, trans-[Ru(dppm)(2) (H)(η(1) -P(4) )]BF(4) ([1]BF(4) ), trans-[Ru(dppe)(2) (H)(η(1) -P(4) )]BF(4) ([2]BF(4) ), [CpRu(PPh(3) )(2) (η(1) -P(4) )]PF(6) ([3]PF(6) ), [CpOs(PPh(3) )(2) (η(1) -P(4) )]PF(6) ([4]PF(6) ), [Cp*Ru(PPh(3) )(2) (η(1) -P(4) )]PF(6) ([5]PF(6) ), [Cp*Ru(dppe)(η(1) -P(4) )]PF(6) ([6]PF(6) ), [Cp*Fe(dppe)(η(1) -P(4) )]PF(6) ([7]PF(6) ), [(triphos)Re(CO)(2) (η(1) -P(4) )]OTf ([8]OTf), and of three bimetallic Ru(μ,η(1:2) -P(4) )Pt species [{Ru(dppm)(2) (H)}(μ,η(1:2) -P(4) ){Pt(PPh(3) )(2) }]BF(4) ([1-Pt]BF(4) ), [{Ru(dppe)(2) (H)}(μ,η(1:2) -P(4) ){Pt(PPh(3) )(2) }]BF(4) ([2-Pt]BF(4) ), [{CpRu(PPh(3) )(2) )}(μ,η(1:2) -P(4) ){Pt(PPh(3) )(2) }]BF(4) ([3-Pt]BF(4) ), [dppm=bis(diphenylphosphanyl)methane; dppe=1,2-bis(diphenylphosphanyl)ethane; triphos=1,1,1-tris(diphenylphosphanylmethyl)ethane; Cp=η(5) -C(5) H(5) ; Cp*=η(5) -C(5) Me(5) ] was studied by variable-temperature (VT) NMR and (31) P{(1) H} exchange spectroscopy (EXSY). For most of the mononuclear species, NMR spectroscopy allowed to ascertain that the metal-coordinated P(4) molecule experiences a dynamic process consisting, apart from the free rotation about the M?P(4) axis, in a tumbling movement of the P(4) cage while remaining chemically coordinated to the central metal. EXSY and VT (31) P?NMR experiments showed that also the binuclear complex cations [1-Pt](+) -[3-Pt](+) are subjected to molecular motions featured by the shift of each metal from one P to an adjacent one of the P(4) moiety. The relative mobility of the metal fragments (Ru vs. Pt) was found to depend on the co-ligands of the binuclear complexes. For complexes [2]BF(4) and [3]PF(6) , MAS, (31) P?NMR experiments revealed that the dynamic processes observed in solution (i.e., rotation and tumbling) may take place also in the solid state. The activation parameters for the dynamic processes of complexes 1(+) , 2(+) , 3(+) , 4(+) , 6(+) , 8(+) in solution, as well as the X-ray structures of 2(+) , 3(+) , 5(+) , 6(+) are also reported. The data collected suggest that metal-coordinated P(4) should not be considered as a static ligand in solution and in the solid state.  相似文献   

6.
A series of new dicationic dihydrogen complexes of ruthenium of the type cis-[(dppm)(2)Ru(eta(2)-H(2))(L)][BF(4)](2) (dppm = Ph(2)PCH(2)PPh(2); L = P(OMe)(3), P(OEt)(3), PF(O(i)Pr)(2)) have been prepared by protonating the precursor hydride complexes cis-[(dppm)(2)Ru(H)(L)][BF(4)] (L = P(OMe)(3), P(OEt)(3), P(O(i)Pr)(3)) using HBF(4).Et(2)O. The cis-[(dppm)(2)Ru(H)(L)][BF(4)] complexes were obtained from the trans hydrides via an isomerization reaction that is acid-accelerated. This isomerization reaction gives mixtures of cis and trans hydride complexes, the ratios of which depend on the cone angles of the phosphite ligands: the greater the cone angle, the greater is the amount of the cis isomer. The eta(2)-H(2) ligand in the dihydrogen complexes is labile, and the loss of H(2) was found to be reversible. The protonation reactions of the starting hydrides with trans PMe(3) or PMe(2)Ph yield mixtures of the cis and the trans hydride complexes; further addition of the acid, however, give trans-[(dppm)(2)Ru(BF(4))Cl]. The roles of the bite angles of the dppm ligand as well as the steric and the electronic properties of the monodentate phosphorus ligands in this series of complexes are discussed. X-ray crystal structures of trans-[(dppm)(2)Ru(H)(P(OMe)(3))][BF(4)], cis-[(dppm)(2)Ru(H)(P(OMe)(3))][BF(4)], and cis-[(dppm)(2)Ru(H)(P(O(i)Pr)(3))][BF(4)] complexes have been determined.  相似文献   

7.
A novel, and quite general, approach for the preparation of tris(heteroleptic) ruthenium(II) complexes is reported. Using this method, which is based on photosubstitution of carbonyl ligands in precursors such as [Ru(bpy)(CO)(2)Cl(2)] and [Ru(bpy)(Me(2)bpy)(CO)(2)](PF(6))(2), mononuclear and dinuclear Ru(II) tris(heteroleptic) polypyridyl complexes containing the bridging ligands 3,5-bis(pyridin-2-yl)-1,2,4-triazole (Hbpt) and 3,5-bis(pyrazin-2-yl)-1,2,4-triazole (Hbpzt) have been prepared. The complexes obtained were purified by column chromatography and characterized by HPLC, mass spectrometry, 1H NMR, absorption and emission spectroscopy and by electrochemical methods. The X-ray structures of the compounds [Ru(bpy)(Me(2)bpy)(bpt)](PF(6))x0.5C(4)H(10)O [1x0.5C(4)H(10)O], [Ru(bpy)(Me(2)bpy)(bpzt)](PF(6))xH(2)O (2xH(2)O) and [Ru(bpy)(Me(2)bpy)(CH(3)CN)(2)](PF(6))(2)xC(4)H(10)O (6xC(4)H(10)O) are reported. The synthesis and characterisation of the dinuclear analogues of 1 and 2, [{Ru(bpy)(Me(2)bpy)}(2)bpt](PF(6))(3)x2H(2)O (3) and [{Ru(bpy)(Me(2)bpy)}(2)bpzt](PF(6))(3) (4), are also described.  相似文献   

8.
Two novel heterometallic octahedral clusters [Rh(4)Pt(2)(CO)(11)(dppm)(2)](1) and [Ru(2)Rh(2)Pt(2)(CO)(12)(dppm)(2)](2) were synthesized by the reaction of [Rh(2)Pt(2)(CO)(6)(dppm)(2)] with [Rh(6)(CO)(14)(NCMe)(2)] and Ru(3)(CO)(12), respectively. Solid state structures of 1 and 2 have been established by a single crystal X-ray diffraction study. Two dppm ligands in 1 are bonded to one platinum and three rhodium atoms, which form an equatorial plane of the Rh(4)Pt(2) octahedron. Two rhodium and two platinum atoms bound to the diphosphine ligands in 2 are nonplanar to give an octahedral C2 symmetric Ru(2)Rh(2)Pt(2)(dppm)2 framework. The (31)P NMR investigation of and (1D, (31)P COSY, (31)P-[(103)Rh] HMQC) and simulation of 1D spectral patterns showed that in both clusters the structures of the M(6)(PP)(2) fragments found in the solid state are maintained in solution.  相似文献   

9.
63Cu NMR spectroscopic studies of copper(I) complexes with various N-donor tridentate ligands are reported. As has been previously reported for most copper(I) complexes, 63Cu NMR signals, when acetonitrile is coordinated to copper(I) complexes of these tridentate ligands, are broad or undetectable. However, when CO is bound to tridentate copper(I) complexes, the 63Cu NMR signals become much sharper and show a large downfield shift compared to those for the corresponding acetonitrile complexes. Temperature dependence of 63Cu NMR signals for these copper(I) complexes show that a quadrupole relaxation process is much more significant to their 63Cu NMR line widths than a ligand exchange process. Therefore, an electronic effect of the copper bound CO makes the 63Cu NMR signal sharp and easily detected. The large downfield shift for the copper(I) carbonyl complex can be explained by a paramagnetic shielding effect induced by the copper bound CO, which amplifies small structural and electronic changes that occur around the copper ion to be easily detected in their 63Cu NMR shifts. This is evidenced by the correlation between the 63Cu NMR shifts for the copper(I) carbonyl complexes and their nu(C[triple bond]O) values. Furthermore, the 63Cu NMR shifts for copper(I) carbonyl complexes with imino-type tridentate ligands show a different correlation line with those for amino-type tridentate ligands. On the other hand, 13C NMR shifts for the copper bound 13CO for these copper(I) carbonyl complexes do not correlate with the nu(C[triple bond]O) values. The X-ray crystal structures of these copper(I) carbonyl complexes do not show any evidence of a significant structural change around the Cu-CO moiety. The findings herein indicate that CO complexation makes 63Cu NMR spectroscopy much more useful for Cu(I) chemistry.  相似文献   

10.
The ruthenium(II) complexes [Ru(R)(κ(2)-S(2)C·IPr)(CO)(PPh(3))(2)](+) (R = CH=CHBu(t), CH=CHC(6)H(4)Me-4, C(C≡CPh)=CHPh) are formed on reaction of IPr·CS(2) with [Ru(R)Cl(CO)(BTD)(PPh(3))(2)] (BTD = 2,1,3-benzothiadiazole) or [Ru(C(C≡CPh)=CHPh)Cl(CO)(PPh(3))(2)] in the presence of ammonium hexafluorophosphate. Similarly, the complexes [Ru(CH=CHC(6)H(4)Me-4)(κ(2)-S(2)C·ICy)(CO)(PPh(3))(2)](+) and [Ru(C(C≡CPh)=CHPh)(κ(2)-S(2)C·ICy)(CO)(PPh(3))(2)](+) are formed in the same manner when ICy·CS(2) is employed. The ligand IMes·CS(2) reacts with [Ru(R)Cl(CO)(BTD)(PPh(3))(2)] to form the compounds [Ru(R)(κ(2)-S(2)C·IMes)(CO)(PPh(3))(2)](+) (R = CH=CHBu(t), CH=CHC(6)H(4)Me-4, C(C≡CPh)=CHPh). Two osmium analogues, [Os(CH=CHC(6)H(4)Me-4)(κ(2)-S(2)C·IMes)(CO)(PPh(3))(2)](+) and [Os(C(C≡CPh)=CHPh)(κ(2)-S(2)C·IMes)(CO)(PPh(3))(2)](+) were also prepared. When the more bulky diisopropylphenyl derivative IDip·CS(2) is used, an unusual product, [Ru(κ(2)-SC(H)S(CH=CHC(6)H(4)Me-4)·IDip)Cl(CO)(PPh(3))(2)](+), with a migrated vinyl group, is obtained. Over extended reaction times, [Ru(CH=CHC(6)H(4)Me-4)Cl(BTD)(CO)(PPh(3))(2)] also reacts with IMes·CS(2) and NH(4)PF(6) to yield the analogous product [Ru{κ(2)-SC(H)S(CH=CHC(6)H(4)Me-4)·IMes}Cl(CO)(PPh(3))(2)](+)via the intermediate [Ru(CH=CHC(6)H(4)Me-4)(κ(2)-S(2)C·IMes)(CO)(PPh(3))(2)](+). Structural studies are reported for [Ru(CH=CHC(6)H(4)Me-4)(κ(2)-S(2)C·IPr)(CO)(PPh(3))(2)]PF(6) and [Ru(C(C≡CPh)=CHPh)(κ(2)-S(2)C·ICy)(CO)(PPh(3))(2)]PF(6).  相似文献   

11.
The complexes TpRu[P(OCH(2))(2)(OCCH(3)](PPh(3))Cl (2) [Tp = hydridotris(pyrazolyl)borate; P(OCH(2))(2)(OCCH(3)) (1) = (4-methyl-2,6,7-trioxa-1-phosphabicyclo[2,2,1]heptane] and TpRu(L)(PPh(3))Cl [L = P(OCH(2))(3)CEt (3), PMe(3) (4) or P(OMe)(3) (5)], (η(6)-C(6)H(6))Ru(L)Cl(2) [L = PPh(3) (6), P(OMe)(3) (7), PMe(3) (8), P(OCH(2))(3)CEt (9), CO (10) or P(OCH(2))(2)(OCCH(3)) (11)] and (η(6)-p-cymene)Ru(L)Cl(2) [L = P(OCH(2))(3)CEt (12), P(OCH(2))(2)(OCCH(3))P(OCH(2))(2)(OCCH(3)) (13), P(OMe)(3) (14) or PPh(3) (15)] have been synthesized, isolated, and characterized by NMR spectroscopy, cyclic voltammetry, mass spectrometry, and, for some complexes, single crystal X-ray diffraction. Data from cyclic voltammetry and solid-state structures have been used to compare the properties of (1) with other phosphorus-based ligands as well as carbon monoxide. Data from the solid-state structures of Ru(II) complexes show that P(OCH(2))(2)(OCCH(3)) has a cone angle of 104°. Cyclic voltammetry data reveal that the Ru(II) complexes bearing P(OCH(2))(2)(OCCH(3)) have more positive Ru(III/II) redox potentials than analogous complexes with the other phosphorus ligands; however, the Ru(III/II) potential for (η(6)-C(6)H(6))Ru[P(OCH(2))(2)(OCCH(3))]Cl(2) is more negative compared to the Ru(III/II) potential for the CO complex (η(6)-C(6)H(6))Ru(CO)Cl(2). For the Ru(II) complexes studied herein, these data are consistent with the overall donor ability of 1 being less than other common phosphines (e.g., PMe(3) or PPh(3)) or phosphites [e.g., P(OCH(2))(3)CEt or P(OMe)(3)] but greater than carbon monoxide.  相似文献   

12.
Thermolysis of [Ru(AsPh3)3(CO)H2] with the N-aryl heterocyclic carbenes (NHCs) IMes (1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene), IPr (1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene) or the adduct SIPr.(C6F5)H (SIPr=1,3-bis(2,6-diisopropylphenyl)-4,5-dihydroimidazol-2-ylidene), followed by addition of CH2Cl2, affords the coordinatively unsaturated ruthenium hydride chloride complexes [Ru(NHC)2(CO)HCl] (NHC=IMes , IPr , SIPr ). These react with CO at room temperature to yield the corresponding 18-electron dicarbonyl complexes . Reduction of and [Ru(IMes)(PPh3)(CO)HCl] () with NaBH4 yields the isolable borohydride complexes [Ru(NHC)(L)(CO)H(eta2-BH4)] (, L=NHC, PPh3). Both the bis-IMes complex and the IMes-PPh3 species react with CO at low temperature to give the eta1-borohydride species [Ru(IMes)(L)(CO)2H(eta1-BH4)] (L=IMes , PPh3), which can be spectroscopically characterised. Upon warming to room temperature, further reaction with CO takes place to afford initially [Ru(IMes)(L)(CO)2H2] (L=IMes, L=PPh3) and, ultimately, [Ru(IMes)(L)(CO)3] (L=IMes , L=PPh3). Both and lose BH3 on addition of PMe2Ph to give [Ru(IMes)(L)(L')(CO)H2](L=L'=PMe2Ph; L=PPh3, L'=PMe2Ph). Compounds and have been tested as catalysts for the hydrogenation of aromatic ketones in the presence of (i)PrOH and H2. For the reduction of acetophenone, catalytic activity varies with the NHC present, decreasing in the order IPr>IMes>SIMes.  相似文献   

13.
Chromium and ruthenium complexes of the chelating phosphine borane H(3)B.dppm are reported. Addition of H(3)B.dppm to [Cr(CO)(4)(nbd)](nbd = norbornadiene) affords [Cr(CO)(4)(eta1-H(3)B.dppm)] in which the borane is linked to the metal through a single B-H-Cr interaction. Addition of H(3)B.dppm to [CpRu(PR(3))(NCMe)(2)](+)(Cp =eta5)-C(5)H(5)) results in [CpRu(PR(3))(eta1-H(3)B.dppm)][PF(6)](R = Me, OMe) which also show a single B-H-Ru interaction. Reaction with [CpRu(NCMe)(3)](+) only resulted in a mixture of products. In contrast, with [Cp*Ru(NCMe)(3)](+)(Cp*=eta5)-C(5)Me(5)) a single product is isolated in high yield: [Cp*Ru(eta2-H(3)B.dppm)][PF(6)]. This complex shows two B-H-Ru interactions. Reaction with L = PMe(3) or CO breaks one of these and the complexes [Cp*Ru(L)(eta1-H(3)B.dppm)][PF(6)] are formed in good yield. With L = MeCN an equilibrium is established between [Cp*Ru(eta2-H(3)B.dppm)][PF(6)] and the acetonitrile adduct. [Cp*Ru (eta2-H(3)B.dppm)][PF(6)] can be considered as being "operationally unsaturated", effectively acting as a source of 16-electron [Cp*Ru (eta1-H(3)B.dppm)][PF(6)]. All the new compounds (apart from the CO and MeCN adducts) have been characterised by X-ray crystallography. The solid-state structure of H(3)B.dppm is also reported.  相似文献   

14.
The ethene derivatives [(eta(5)-C(5)R(5))RuX(C(2)H(4))(PPh(3))] with R=H and Me, which have been prepared from the eta(3)-allylic compounds [(eta(5)-C(5)R(5))Ru(eta(3)-2-MeC(3)H(4))(PPh(3))] (1, 2) and acids HX under an ethene atmosphere, are excellent starting materials for the synthesis of a series of new halfsandwich-type ruthenium(II) complexes. The olefinic ligand is replaced not only by CO and pyridine, but also by internal and terminal alkynes to give (for X=Cl) alkyne, vinylidene, and allene compounds of the general composition [(eta(5)-C(5)R(5))RuCl(L)(PPh(3))] with L=C(2)(CO(2)Me)(2), Me(3)SiC(2)CO(2)Et, C=CHCO(2)R, and C(3)H(4). The allenylidene complex [(eta(5)-C(5)H(5))RuCl(=C=C=CPh(2))(PPh(3))] is directly accessible from 1 (R=H) in two steps with the propargylic alcohol HC triple bond CC(OH)Ph(2) as the precursor. The reactions of the ethene derivatives [(eta(5)-C(5)H(5))RuX(C(2)H(4))(PPh(3))] (X=Cl, CF(3)CO(2)) with diazo compounds RR'CN(2) yield the corresponding carbene complexes [(eta(5)-C(5)R(5))RuX(=CRR')(PPh(3))], while with ethyl diazoacetate (for X=Cl) the diethyl maleate compound [(eta(5)-C(5)H(5))RuCl[eta(2)-Z-C(2)H(2)(CO(2)Et)(2)](PPh(3))] is obtained. Halfsandwich-type ruthenium(II) complexes [(eta(5)-C(5)R(5))RuCl(=CHR')(PPh(3))] with secondary carbenes as ligands, as well as cationic species [(eta(5)-C(5)H(5))Ru(=CPh(2))(L)(PPh(3))]X with L=CO and CNtBu and X=AlCl(4) and PF(6), have also been prepared. The neutral compounds [(eta(5)-C(5)H(5))RuCl(=CRR')(PPh(3))] react with phenyllithium, methyllithium, and the vinyl Grignard reagent CH(2)=CHMgBr by displacement of the chloride and subsequent C-C coupling to generate halfsandwich-type ruthenium(II) complexes with eta(3)-benzyl, eta(3)-allyl, and substituted olefins as ligands. Protolytic cleavage of the metal-allylic bond in [(eta(5)-C(5)H(5))Ru(eta(3)-CH(2)CHCR(2))(PPh(3))] with acetic acid affords the corresponding olefins R(2)C=CHCH(3). The by-product of this process is the acetato derivative [(eta(5)-C(5)H(5))Ru(kappa(2)-O(2)CCH(3))(PPh(3))], which can be reconverted to the carbene complexes [(eta(5)-C(5)H(5))RuCl(=CR(2))(PPh(3))] in a one-pot reaction with R(2)CN(2) and Et(3)NHCl.  相似文献   

15.
The reaction of [RhOs(CO)(3)(μ-CH(2))(dppm)(2)][CF(3)SO(3)] (dppm = μ-Ph(2)PCH(2)PPh(2)) with 1,3,4,5-tetramethylimidazol-2-ylidene (IMe(4)) results in competing substitution of the Rh-bound carbonyl by IMe(4) and dppm deprotonation by IMe(4) to give the two products [RhOs(IMe(4))(CO)(2)(μ-CH(2))(dppm)(2)][CF(3)SO(3)] and [RhOs(CO)(3)(μ-CH(2))(μ-κ(1):η(2)-dppm-H)(dppm)] [3; dppm-H = bis(diphenylphosphino)methanide], respectively. In the latter product, the dppm-H group is P-bound to Os while bound to Rh by the other PPh(2) group and the adjacent methanide C. The reaction of the tetracarbonyl species [RhOs(CO)(4)(μ-CH(2))(dppm)(2)][CF(3)SO(3)] with IMe(4) results in the exclusive deprotonation of a dppm ligand to give [RhOs(CO)(4)(μ-CH(2))(μ-κ(1):κ(1)-dppm-H)(dppm)] (4) in which dppm-H is P-bound to both metals. Both deprotonated products are cleanly prepared by the reaction of their respective precursors with potassium bis(trimethylsilyl)amide. Reversible conversion of the μ-κ(1):η(2)-dppm-H complex to the μ-κ(1):κ(1)-dppm-H complex is achieved by the addition or removal of CO, respectively. In the absence of CO, compound 3 slowly converts in solution to [RhOs(CO)(3)(μ-κ(1):κ(1):κ(1)-Ph(2)PCHPPh(2)CH(2))(dppm)] (5) as a result of dissociation of the Rh-bound PPh(2) moiety of the dppm-H group and its attack at the bridging CH(2) group. Compound 4 is also unstable, yielding the ketenyl- and ketenylidene/hydride tautomers [RhOs(CO)(3)(μ-κ(1):η(2)-CHCO)(dppm)(2)] (6a) and [RhOs(H)(CO)(3)(μ-κ(1):κ(1)-CCO)(dppm)(2)] (6b), initiated by proton transfer from μ-CH(2) to dppm-H. Slow conversion of these tautomers to a pair of isomers of [RhOs(H)(CO)(3)(μ-κ(1):κ(1):κ(1)-Ph(2)PCH(COCH)PPh(2))(dppm)] (7a and 7b) subsequently occurs in which proton transfer from a dppm group to the ketenylidene fragment gives rise to coupling of the resulting dppm-H methanide C and the ketenyl unit. Attempts to couple the ketenyl- or ketenylidene-bridged fragments in 6a/6b with dimethyl acetylenedicarboxylate (DMAD) yield [RhOs(κ(1)-CHCO)(CO)(3)(μ-DMAD)(dppm)(2)], in which the ketenyl group is terminally bound to Os.  相似文献   

16.
The complexes [(H3N)5Ru(II)(mu-NC)Mn(I)Lx]2+, prepared from [Ru(OH2)(NH3)5]2+ and [Mn(CN)L(x)] {L(x) = trans-(CO)2{P(OPh)3}(dppm); cis-(CO)2(PR3)(dppm), R = OEt or OPh; (PR3)(NO)(eta-C5H4Me), R = Ph or OPh}, undergo two sequential one-electron oxidations, the first at the ruthenium centre to give [(H3N)5Ru(III)(mu-NC)Mn(I)Lx]3+; the osmium(III) analogues [(H3N)5Os(III)(mu-NC)Mn(I)Lx]3+ were prepared directly from [Os(NH3)5(O3SCF3)]2+ and [Mn(CN)Lx]. Cyclic voltammetry and electronic spectroscopy show that the strong solvatochromism of the trications depends on the hydrogen-bond accepting properties of the solvent. Extensive hydrogen bonding is also observed in the crystal structures of [(H3N)5Ru(III)(mu-NC)Mn(I)(PPh3)(NO)(eta-C5H4Me)][PF6]3.2Me2CO.1.5Et2O, [(H3N)5Ru(III)(mu-NC)Mn(I)(CO)(dppm)2-trans][PF6]3.5Me2CO and [(H3N)5Ru(III)(mu-NC)Mn(I)(CO)2{P(OEt)3}(dppm)-trans][PF6]3.4Me2CO, between the amine groups (the H-bond donors) at the Ru(III) site and the oxygen atoms of solvent molecules or the fluorine atoms of the [PF6]- counterions (the H-bond acceptors).  相似文献   

17.
The complexes Ru(CO)2L2(AL-2H) (AL = alizarin; L = PPh3, PCyc3, PBu3, P(m-NaSO3C6H4)3), Ru(CO)(dppe)(PBu3)(AL-2H), and RuH(CO)L2(AL-H) (L = PPh3, PCyc3), and Ru(CO)2L2(AR-2H) (AR = anthrarobin; L = PBu3) were prepared by reactions of Ru3(CO)12, L, and AL, and the complexes RuH(CO)(PPh3)2(AL-H), RuH(CO)(PPh3)2(QN-H) (QN = quinizarin), and RuH(CO)(PPh3)2(LQN-H) (LQN = leucoquinizarin) are prepared by reactions of RuH2(CO)(PPh3)3 with AL or QN. The AL-2H and AR-2H ligands act as 1,2-catecholates, whereas the AL-H, QN-H, LQN-H ligands are 1,9-o-acylphenolate ligands. RuH(CO)(PPh3)2(AL-H) is characterized by X-ray crystallography. The electrochemistry of these complexes is examined, and the semiquinone complexes [Ru(CO)2L2(AL-2H)]+ (L = PPh3, PCyc3, PBu3) and [Ru(CO)(dppe)(PBu3)(AL-2H)]+ are generated by chemical oxidation and were characterized by EPR and IR spectroscopy. The photophysical properties are also reported.  相似文献   

18.
Stable ruthenium(II) carbonyl complexes having the general composition [RuCl(CO)(PPh3)(B)(L)] (where B=PPh3, pyridine, piperidine or morpholine; L=anion of bidentate Schiff bases (Vanmet, Vanampy, Vanchx)) were synthesized from the reaction of [RuHCl(CO)(PPh3)2(B)] with bidentate Schiff base ligands derived from condensation of o-vanillin with primary amines such as methylamine, 2-aminopyridine and cyclohexylamine. The new complexes were characterized by elemental analysis, IR, UV-Vis and 1H NMR spectral data. The redox property of the complexes were studied by cyclic voltammetric technique and the stability of the complexes towards oxidation were related to the electron releasing or electron withdrawing ability of the substituent in the phenyl ring of o-vanillin. An octahedral geometry has been assigned for all the complexes. In all the above reactions, the Schiff bases replace one molecule of PPh3 and hydride ion from the starting complexes, which indicate that the Ru-N bonds present in the complexes containing heterocyclic nitrogen bases are stronger than the Ru-P. The Schiff bases and their ruthenium(II) complexes have been tested in vitro to evaluate their activity against bacteria, viz., Staphylococcus aureus (209p) and E. coli (ESS 2231).  相似文献   

19.
Treatment of cis-[RuCl2(dppm)2] (dppm = bis(diphenylphosphino)methane) with dithiocarbamates, NaS2CNR2 (R = Me, Et) and [H2NC5H10][S2CNC5H10], yields cations [Ru(S2CNR2)2(dppm)2](+) and [Ru(S2CNC5H10)2(dppm)2](+), respectively. The zwitterions S2CNC4H8NHR (R = Me, Et) react with the same metal complex in the presence of base to yield [Ru(S2CNC4H8NR)(dppm)2](+). Piperazine or 2,6-dimethylpiperazine reacts with carbon disulfide to give the zwitterionic dithiocarbamate salts H2NC4H6(R2-3,5)NCS2 (R = H; R = Me), which form the complexes [Ru(S2CNC4H6(R2-3,5)NH2)(dppm)2](2+) on reaction with cis-[RuCl2(dppm)2]. Sequential treatment of [Ru(S2CNC4H8NH2)(dppm)2](2+) with triethylamine and carbon disulfide forms the versatile metalla-dithiocarbamate complex [Ru(S2CNC4H8NCS2)(dppm)2] which reacts readily with cis-[RuCl2(dppm)2] to yield [{Ru(dppm)2}2(S2CNC4H8NCS2)]. Reaction of [Ru(S2CNC4H8NCS2)(dppm)2] with [Os(CH=CHC6H4Me-4)Cl(CO)(BTD)(PPh3)2] (BTD = 2,1,3-benzothiadiazole), [Pd(C6H4CH2NMe2)Cl]2, [PtCl2(PEt3)2], and [NiCl2(dppp)] (dppp = 1,3-bis(diphenylphosphino)propane) results in the heterobimetallic complexes [(dppm)2Ru(S2CNC4H8NCS2)ML(n))](m+) (ML(n) = Os(CH=CHC6H4Me-4)(CO)(PPh3)2](+), m = 1; ML(n) = Pd(C,N-C6H4CH2NMe2), m = 1; ML(n) = Pt(PEt3)2, m = 2; ML(n) = Ni(dppp), m = 2). Reaction of [NiCl2(dppp)] with H2NC4H8NCS2 yields the structurally characterized compound, [Ni(S2CNC4H8NH2)(dppp)](2+), which reacts with base, CS2, and cis-[RuCl2(dppm)2] to provide an alternative route to [(dppm)2Ru(S2CNC4H8NCS2)Ni(dppp)](+). A further metalla-dithiocarbamate based on cobalt, [CpCo(S2CNC4H8NH2)(PPh3)](2+), is formed by treatment of CpCoI2(CO) with S2CNC4H8NH2 followed by PPh3. Further reaction with NEt3, CS2, and cis-[RuCl2(dppm)2] yields [(Ph3P)CpCo(S2CNC4H8NCS2)Ru(dppm)2](2+). Heterotrimetallic species of the form [{(dppm)2Ru(S2CNC4H8NCS2)}2M](2+) result from the reaction of [Ru(S2CNC4H8NCS2)(dppm)2] and M(OAc)2 (where M = Ni, Cu, Zn). Reaction of [Ru(S2CNC4H8NCS2)(dppm)2] with Co(acac)3 and LaCl3 results in the formation of the compounds [{(dppm)2Ru(S2CNC4H8NCS2)}3Co](3+) and [{(dppm)2Ru(S2CNC4H8NCS2)}3La](3+), respectively. The electrochemical behavior of selected examples is also reported.  相似文献   

20.
The photochemical reaction of Ru(CO)(3)(dppe) and Fe(CO)(3)(dppe)(dppe = Ph(2)PCH(2)CH(2)PPh(2)) with parahydrogen has been studied by in situ-photochemistry resulting in NMR spectra of Ru(CO)(2)(dppe)(H)(2) that show significant enhancement of the hydride resonances while normal signals are seen in Fe(CO)(2)(dppe)(H)(2). This effect is associated with a singlet electronic state for the key intermediate Ru(CO)(2)(dppe) while Fe(CO)(2)(dppe) is a triplet. DFT calculations reveal electronic ground states consistent with this picture. The fluxionality of Ru(CO)(2)(dppe)(H)(2) and Fe(CO)(2)(dppe)(H)(2) has been examined by NMR spectroscopy and rationalised by theoretical methods which show that two pathways for ligand exchange exist. In the first, the phosphorus and carbonyl centres interchange positions while the two hydride ligands are unaffected. A second pathway involving interchange of all three ligand sets was found at slightly higher energy. The H-H distances in the transition states are consistent with metal-bonded dihydrogen ligands. However, no local minimum (intermediate) was found along the rearrangement pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号