首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Iron(II) complexes of the macrocyclic ligands 1,4,7,10-tetrakis(carbamoylmethyl)-1,4,7,10-tetraazacyclododecane (TCMC) and (1S,4S,7S,10S)-1,4,7,10-tetrakis(2-hydroxypropyl)-1,4,7,10-tetraazacyclododecane (STHP) contain a highly stabilized Fe(II) center in the high-spin state, which is encapsulated by an octadentate macrocycle. The complexes are resistant to acid, metal cations, phosphate, carbonate, and oxygen in aqueous solution. [Fe(TCMC)](2+) contains exchangeable amide protons, and [Fe(STHP)](2+) contains exchangeable protons attributed to alcohol OH donors, which give chemical exchange saturation transfer (CEST) peaks at physiological pH and 37 °C at 50 and 54 ppm from bulk water, respectively. The distinct pH dependence of the CEST peak of the two complexes over the range of pH 6-8 shows that these two groups may be useful in the development of ratiometric pH sensors based on iron(II).  相似文献   

2.
The ligand 1,4,7-tris(acetophenoneoxime)-1,4,7-triazacyclononane (H(3)L) has been synthesized and its coordination properties toward Cu(II), Ni(II), Co(II), and Mn(II) in the presence of air have been investigated. Copper(II) yields a mononuclear complex, [Cu(H(2)L)](ClO(4)) (1), cobalt(II) and manganese(II) ions yield mixed-valence Co(III)(2)Co(II) (2a) and Mn(II)(2)Mn(III) (4) complexes, whereas nickel(II) produces a tetranuclear [Ni(4)(HL)(3)](2+) (3) complex. The complexes have been structurally, magnetochemically, and spectroscopically characterized. Complex 3, a planar trigonal-shaped tetranuclear Ni(II) species, exhibits irregular spin-ladder. Variable-temperature (2-290 K) magnetic susceptibility analysis of 3 demonstrates antiferromagnetic exchange interactions (J = -13.4 cm(-1)) between the neighboring Ni(II) ions, which lead to the ground-state S(t) = 2.0 owing to the topology of the spin-carriers in 3. A bulk ferromaganetic interaction (J = +2 cm(-1)) is prevailing between the neighboring high-spin Mn(II) and high-spin Mn(III) ions leading to a ground state of S(t) = 7.0 for 4. The large ground-state spin value of S(t) = 7.0 has been confirmed by magnetization measurements at applied magnetic fields of 1, 4 and 7 T. A bridging monomethyl carbonato ligand formation occurs through an efficient CO(2) uptake from air in methanolic solutions containing a base in the case of complex 4.  相似文献   

3.
Three new metal-coordinating ligands, L(1)·4HCl [1-(2-guanidinoethyl)-1,4,7-triazacyclononane tetrahydrochloride], L(2)·4HCl [1-(3-guanidinopropyl)-1,4,7-triazacyclononane tetrahydrochloride], and L(3)·4HCl [1-(4-guanidinobutyl)-1,4,7-triazacyclononane tetrahydrochloride], have been prepared via the selective N-functionalization of 1,4,7-triazacyclononane (tacn) with ethylguanidine, propylguanidine, and butylguanidine pendants, respectively. Reaction of L(1)·4HCl with Cu(ClO(4))(2)·6H(2)O in basic aqueous solution led to the crystallization of a monohydroxo-bridged binuclear copper(II) complex, [Cu(2)L(1)(2)(μ-OH)](ClO(4))(3)·H(2)O (C1), while for L(2) and L(3), mononuclear complexes of composition [Cu(L(2)H)Cl(2)]Cl·(MeOH)(0.5)·(H(2)O)(0.5) (C2) and [Cu(L(3)H)Cl(2)]Cl·(DMF)(0.5)·(H(2)O)(0.5) (C3) were crystallized from methanol and DMF solutions, respectively. X-ray crystallography revealed that in addition to a tacn ring from L(1) ligand, each copper(II) center in C1 is coordinated to a neutral guanidine pendant. In contrast, the guanidinium pendants in C2 and C3 are protonated and extend away from the Cu(II)-tacn units. Complex C1 features a single μ-hydroxo bridge between the two copper(II) centers, which mediates strong antiferromagnetic coupling between the metal centers. Complexes C2 and C3 cleave two model phosphodiesters, bis(p-nitrophenyl)phosphate (BNPP) and 2-hydroxypropyl-p-nitrophenylphosphate (HPNPP), more rapidly than C1, which displays similar reactivity to [Cu(tacn)(OH(2))(2)](2+). All three complexes cleave supercoiled plasmid DNA (pBR 322) at significantly faster rates than the corresponding bis(alkylguanidine) complexes and [Cu(tacn)(OH(2))(2)](2+). The high DNA cleavage rate for C1 {k(obs) = 1.30 (±0.01) × 10(-4) s(-1) vs 1.23 (±0.37) × 10(-5) s(-1) for [Cu(tacn)(OH(2))(2)](2+) and 1.58 (±0.05) × 10(-5) s(-1) for the corresponding bis(ethylguanidine) analogue} indicates that the coordinated guanidine group in C1 may be displaced to allow for substrate binding/activation. Comparison of the phosphate ester cleavage properties of complexes C1-C3 with those of related complexes suggests some degree of cooperativity between the Cu(II) centers and the guanidinium groups.  相似文献   

4.
Two new N-substituted derivatives of the 1,4,7-triazacyclononane (tacn) macrocycle, 1-benzyl-4,7-dimethyl-1,4,7-triazacyclononane (L2) and 1,4,7-tris(3-cyanobenzyl)-1,4,7-triazacyclononane (L3), have been prepared and, together with 1,4-dimethyl-1,4,7-triazacyclononane (L1), have been used to synthesize the corresponding hydroxo-bridged binuclear copper (II) complexes, [Cu2(mu-OH)2L2](ClO4)2.xH2O (1 L = L1, x = 0; 2 L = L2, x = 1; 3 L = L3, x = 2). The X-ray crystal structures of all three complexes reveal the presence of [Cu2(mu-OH)2]2+ cores capped by pairs of facially coordinating tacn ligands so that the Cu(II) centers reside in distorted square pyramidal coordination environments. Variable-temperature magnetic susceptibility measurements indicate weak antiferromagnetic coupling (J = -36.4 cm(-1)) between the Cu(II) centers in 1, while the centers in 2 and 3 have been shown to interact ferromagnetically (J = 11.2 and 49.3 cm(-1), respectively). The variation in the strength and sign of these interactions has been rationalized in terms of the differing geometries of the [Cu2(mu-OH)2]2+ cores. The ability of the Cu(II) complexes to cleave phosphate ester bonds has been probed using the model phosphate ester bis(4-nitrophenyl)phosphate (BNPP) at pH 7.4 and a temperature of 50 degrees C. The measured rate constant for 3 (3 x 10(-4) s(-1)) is significantly greater than those previously reported for the Cu(II) complexes of the fully alkylated tacn ligands, Me3tacn and iPr3tacn, which until now have been rated as the most effective tacn-based phosphate ester cleavage agents.  相似文献   

5.
The pK(a)s and Zn2+, Cd2+ and Cu2+ complexation constants (K) for 1,4,7-tris[(2'S)-acetamido-2'-(methyl-3'-phenylpropionate)]-1,4,7-triazacyclononane, 1, 1,4,7-tris[(2'S)-acetamido-2'-(1'-carboxy-3'-phenylpropane)]-1,4,7-triazacyclononane, H(3)2, 1,4,7-tris[(2'S)-acetamido-2'-(methyl-3'-(1H-3-indolyl)propionate)]-1,4,7-triazacyclononane, 3, and 1,4,7,10-tetrakis[(2'S)-acetamido-2'-(methyl-3'-phenylpropionate)]-1,4,7,10-tetraazacyclododecane, 4, 1,4,7,10-tetrakis[(2'S)-acetamido-2'-(1'-carboxy-3'-phenylpropane)]-1,4,7,10-tetraazacyclododecane, H(4)5, in 20 : 80 v/v water-methanol solution are reported. The pK(a)s within the potentiometric detection range for H(3)1(3+) = 8.69 and 3.59, for H(6)2(3+) = 9.06, 6.13, 4.93 and 4.52, H(3)3(3+) = 8.79 and 3.67, H(4)4(4+) = 8.50, 5.62 and 3.77 and for H(8)5(4+) = 9.89, 7.06, 5.53, 5.46, 4.44 and 4.26 where each tertiary amine nitrogen is protonated. The complexes of 1: [Zn(1)]2+(9.00), [Cd(1)]2+ (6.49), [Cd(H1)]3+ (4.54) and [Cu(1)]2+ (10.01) are characterized by the log(K/dm3 mol(-1)) values shown in parentheses. Analogous complexes are formed by 3 and 4: [Zn(3)]2+ (10.19), [Cd(3)]2+ (8.54), [Cu(3)]2+ (10.77), [Zn(4)]2+ (11.41) [Cd(4)]2+ (9.16), [Cd(H4)]3+ (6.16) and [Cu(4)]2+ (11.71). The tricarboxylic acid H(3)2 generates a greater variety of complexes as exemplified by: [Zn(2)-] (10.68) [Zn(H2)] (6.60) [Zn(H(2)2)+] (5.15), [Cd(2)](-) (4.99), [Cd(H2)] (4.64), [Cd(H2(2))]+ (3.99), [Cd(H(3)2)]2+ (3.55), [Cu(2)](-) (12.55) [Cu(H2)] (7.66), [Cu(H(2)2)]+ (5.54) and [Cu(2)2](4-) (3.23). The complexes of H(4)5 were insufficiently soluble to study in this way. The 1H and 13C NMR spectra of the ligands are consistent with formation of a predominant Zn2+ and Cd2+ Delta or Lambda diastereomer. The preparations of the new pendant arm macrocycles H(3)2, 3, 4 and H(4)5 are reported.  相似文献   

6.
Reaction of 1-propylamino-4-acetato-1,4,7-triazacyclononane (L1), 1-benzyl-4-acetato-1,4,7-triazacyclononane (L2) and 1-benzyl-4-propylamino-1,4,7-triazacyclononane (L3) with a copper(II) salt gave Na2[CuL1](ClO4)3(1a), [CuL2]Cl (2) and [Cu2L32](ClO4)4.5H2O (3), respectively. [CuL4]ClO4 (4) was formed by reacting 1-formyl-4-ethylacetato-1,4,7-triazacyclononane with cupric chloride in aqueous solution. The X-ray crystal structures of the complexes reveal that the ligands generate distorted square pyramidal or square planar coordination environments about the Cu(II) centre, but in three complexes (1b, 3 and 4) weak interactions to an oxygen atom from a perchlorate anion and, in the case of 4, also to an amide nitrogen leading to tetragonally elongated octahedral Cu(II) geometries. In 4, the formyl group is found to reduce the coordinating ability of the macrocyclic nitrogen to which it is attached, as evidenced by the weak CuN interaction. The formation of five-membered chelate rings on coordination of the ligands further contributes to the distortion from the ideal geometries. The crystal lattices contain a number of novel supramolecular features. 1a contains a negatively charged sodium perchlorate chain of composition [Na2(ClO4)3]x(x-), with a complex series of Na-O-Na bridges flanked by [CuL1]+ units, while 3 contains highly complex hydrogen bonded sheets approximately 20 A thick that stack through van der Waals interactions. One-dimensional chains comprised of copper complexes are found in 2 and 4, and are held together by hydrogen bonds in 2 and acetate bridges between the copper cations in 4. The solution EPR spectra indicate that the copper(II) centres exist in isolated distorted square pyramidal (possibly square planar for 4) environments, while in the solid state there is evidence for the existence of weak exchange and dipole-dipole coupling for some complexes.  相似文献   

7.
We have prepared and characterized a new phenol-based compartmental ligand (H(2)L) incorporating 1,4,7-triazacyclononane ([9]aneN(3)), and we have investigated its coordination behavior with Cu(II), Zn(II), Cd(II), and Pb(II). The protonation constants of the ligand and the thermodynamic stabilities of the 1:1 and 2:1 (metal/ligand) complexes with these metal ions have been investigated by means of potentiometric measurements in aqueous solutions. The mononuclear [M(L)] complexes show remarkably high stability suggesting that, along with the large number of nitrogen donors available for metal binding, deprotonated phenolic functions are also involved in binding the metal ion. The mononuclear complexes [M(L)] show a marked tendency to add a second metal ion to afford binuclear species. The formation of complexes [M(2)(H(2)L)](4+) occurs at neutral or slightly acidic pH and is generally followed by metal-assisted deprotonation of the phenolic groups to give [M(2)(HL)](3+) and [M(2)(L)](2+) in weakly basic solutions. The complexation properties of H(2)L have also been investigated in the solid state. Crystals suitable for X-ray structural analysis were obtained for the binuclear complexes [Cu(2)(L)](BF(4))(2).(1)/(2)MeCN (1), [Zn(2)(HL)](ClO(4))(3).(1)/(2)MeCN (2), and [Pb(2)(L)](ClO(4))(2).2MeCN (4). In 1 and 2, the phenolate O-donors do not bridge the two metal centers, which are, therefore, segregated each within an N(5)O-donor compartment. However, in the case of the binuclear complex [Pb(2)(L)](ClO(4))(2).2MeCN (4), the two Pb(II) centers are bridged by the phenolate oxygen atoms with each metal ion sited within an N(5)O(2)-donor compartment of L(2)(-), with a Pb.Pb distance of 3.9427(5) A.  相似文献   

8.
The bis-complexes [Cu(L(dt))(2)](OTf)(2) (1) and [Cu(L(ot))(2)](OTf)(2) (2), where L(dt) = 1-dodecyl-1,4,7-triazacyclononane, L(ot) = 1-octadecyl-1,4,7-triazacyclononane and OTf = trifluoromethanesulfonate, formed a novel class of metallo-liposomes in water that transfect pEGFP-N1 plasmids into HEK 293-T cells at 38% and 4% efficiency, respectively.  相似文献   

9.
Chiu WH  Peng SM  Che CM 《Inorganic chemistry》1996,35(11):3369-3374
Two bis(amido)ruthenium(IV) complexes, [Ru(IV)(bpy)(L-H)(2)](2+) and [Ru(IV)(L)(L-H)(2)](2+) (bpy = 2,2'-bipyridine, L = 2,3-diamino-2,3-dimethylbutane, L-H = (H(2)NCMe(2)CMe(2)NH)(-)), were prepared by chemical oxidation of [Ru(II)(bpy)(L)(2)](2+) and the reaction of [(n-Bu)(4)N][Ru(VI)NCl(4)] with L, respectively. The structures of [Ru(bpy)(L-H)(2)][ZnBr(4)].CH(3)CN and [Ru(L)(L-H)(2)]Cl(2).2H(2)O were determined by X-ray crystal analysis. [Ru(bpy)(L-H)(2)][ZnBr(4)].CH(3)CN crystallizes in the monoclinic space group P2(1)/n with a = 12.597(2) ?, b = 15.909(2) ?, c = 16.785(2) ?, beta = 91.74(1) degrees, and Z = 4. [Ru(L)(L-H)(2)]Cl(2).2H(2)O crystallizes in the tetragonal space group I4(1)/a with a = 31.892(6) ?, c = 10.819(3) ?, and Z = 16. In both complexes, the two Ru-N(amide) bonds are cis to each other with bond distances ranging from 1.835(7) to 1.856(7) ?. The N(amide)-Ru-N(amide) angles are about 110 degrees. The two Ru(IV) complexes are diamagnetic, and the chemical shifts of the amide protons occur at around 13 ppm. Both complexes display reversible metal-amide/metal-amine redox couples in aqueous solution with a pyrolytic graphite electrode. Depending on the pH of the media, reversible/quasireversible 1e(-)-2H(+) Ru(IV)-amide/Ru(III)-amine and 2e(-)-2H(+) Ru(IV)-amide/Ru(II)-amine redox couples have been observed. At pH = 1.0, the E degrees is 0.46 V for [Ru(IV)(bpy)(L-H)(2)](2+)/[Ru(III)(bpy)(L)(2)](3+) and 0.29 V vs SCE for [Ru(IV)(L)(L-H)(2)](2+)/[Ru(III)(L)(3)](3+). The difference in the E degrees values for the two Ru(IV)-amide complexes has been attributed to the fact that the chelating saturated diamine ligand is a better sigma-donor than 2,2'-bipyridine.  相似文献   

10.
The complexes of osmium with tacn (1,4,7-triazacyclononane) and Me(3)tacn (1,4,7-trimethyl-1,4,7-triazacyclononane), [LOs (eta(6)-C(6)H(6))](PF(6))(2) (L = tacn) and LOsCl(3) (L = tacn, Me(3)tacn), have been prepared by substitution of L on [Os(eta(6)-C(6)H(6))Cl(2)](2) or [Os(2)Cl(8)](2)(-), respectively. Reaction of LOsCl(3) with neat triflic acid leads to partial replacement of chloride and formation of the binuclear Os(III)-Os(III) complexes [LOs(&mgr;-Cl(3))OsL](PF(6))(3) (L = tacn, Me(3)tacn). The binuclear nature was established by NMR spectroscopy and elemental analysis and, for L = tacn, a partially refined X-ray crystal structure which shows the Os-Os separation to be 2.667 ?, indicative of significant metal-metal bonding. Reduction of [LOs(&mgr;-Cl(3))OsL](3+) over zinc amalgam in either aqueous or non-aqueous solution yields the intensely colored Os(II)-Os(III) mixed-valence ions [LOs(&mgr;-Cl(3))OsL](2+). Electrochemical measurements on [LOs(&mgr;-Cl(3))OsL](3+) in CH(3)CN reveal the reversible formation of the mixed valence ions. These are further reduced at lower potential to the Os(II)-Os(II) binuclear species, reversibly for L = Me(3)tacn. (Me(3)tacn)OsCl(3) is oxidized by persulfate ion to give [(Me(3)tacn)OsCl(3)](+); zinc amalgam reduction in an aqueous solution at high concentration produces the binuclear complex [(Me(3)tacn)Os(&mgr;-Cl(3))Os(Me(3)tacn)](3+) or, at low concentration, a solution containing an air sensitive osmium(II) species. Addition of BPh(4)(-) results in the eta(6)-arene zwitterion [(Me(3)tacn)Os(eta(6)-C(6)H(5)BPh(3))](+), which was characterized by X-ray diffraction on the BPh(4)(-) salt. The compound crystallizes in the triclinic space group P1 with a = 11.829(2) ?, b = 12.480(3) ?, c = 17.155(4) ?, alpha = 84.42(2) degrees, beta = 83.52(2) degrees, gamma = 71.45(2) degrees, V = 2380(2) ?(3), Z = 2, and R = 7.62%, and R(w) = 7.39%.  相似文献   

11.
A paramagnetic Yb(III) complex bearing six exchangeable amide protons, [Yb(MBDO3AM)](3+), has been investigated with the aim of developing a MRI-CEST (chemical exchange saturation transfer) contrast agent responsive to the concentration of L-lactate. The complex binds the substrate quantitatively to yield [Yb(MBDO3AM)L-lactate](2+). The exchange between the free and the L-lactate-bound complex is slow on the NMR time scale, and the resonances of their corresponding amide protons are sufficiently separated (more than 10 ppm) to allow their selective irradiation. Therefore, the CEST properties of the two forms can be independently assessed. In turn, the resulting saturation transfer to the bulk water signal is dependent on the L-lactate concentration.  相似文献   

12.
FeII, CoII and NiII complexes of two tetraazamacrocycles (1,4,8,11‐tetrakis(carbamoylmethyl)‐1,4,8,11‐tetraazacyclotetradecane ( L1 ) and 1,4,7,10‐tetrakis(carbamoylmethyl)‐1,4,7,10‐tetraazacyclododecane ( L2 ) show promise as paraCEST agents for registration of temperature (paraCEST=paramagnetic chemical exchange saturation transfer). The FeII, CoII and NiII complexes of L1 show up to four CEST peaks shifted ≤112 ppm, whereas analogous complexes of L2 show only a single CEST peak at ≤69 ppm. Comparison of the temperature coefficients (CT) of the CEST peaks of [Co( L2 )]2+, [Fe( L2 )]2+, [Ni( L1 )]2+ and [Co( L1 )]2+ showed that a CEST peak of [Co( L1 )]2+ gave the largest CT (?0.66 ppm oC?1 at 4.7 T). NMR spectral and CEST properties of these complexes correspond to coordination complex symmetry as shown by structural data. The [Ni( L1 )]2+ and [Co( L1 )]2+ complexes have a six‐coordinate metal ion bound to the 1‐, 4‐amide oxygen atoms and four nitrogen atoms of the tetraazamacrocycle. The [Fe( L2 )]2+ complex has an unusual eight‐coordinate FeII bound to four amide oxygen atoms and four macrocyclic nitrogen atoms. For [Co( L2 )]2+, one structure has seven‐coordinate CoII with three bound amide pendents and a second structure has a six‐coordinate CoII with two bound amide pendents.  相似文献   

13.
The reaction of [Cu(DapdoH(2))2](2+) ions with [Cr(III)L(MeOH)2Br](2+) ions (L = 1,4,7-trimethyl-1,4,7-triazacyclononane; DapdoH(2) = 2,6-diacetylpyridine dioxime) produced in situ in methanol, yielded, in the presence of triethylamine, the complex [L(2)Cr(III)(2)(Dapdo)2(OH)2Cu(II)(2)Br(2)](ClO(4))2. It has been characterized on the basis of elemental analysis, IR spectroscopy and variable-temperature (2-298 K) magnetic susceptibility measurements. The molecular structure established by X-ray diffraction consists of a [Cr(III)(2)(micro-NO)4(micro-OH)2Cu(II)(2)](4+)-core, which can be considered as two edge-sharing triangular CrCu(2)-units. The variable-field variable-temperature magnetic measurements revealed a ground state of S(t) = 2 with uncommon antiferromagnetic exchange interactions between the chromium(III) and copper(II) centers: J(A) = -79 +/- 2 cm(-1), J(B) = -17 +/- 1.7 cm(-1), where J(A) represents the interactions through a combination of oximate (>N-O-) and a hydroxo-bridging, while J(B) is the exchange through only a two-atom oximate (>N-O-) group.  相似文献   

14.
The structure and physicochemistry of the [Ni(II)(AAZ)(2)](ClO(4))(2) (1) complex (AAZ = 6-amino-6-methylperhydro-1,4-diazepine), as a system that is able to mimic some important chelate properties of 1,4,7-triazacyclononane, are reported. The syntheses of a new unsymmetric AAZ-functionalized ligand and the structure of its first heterodinuclear Fe(III)Zn(II) complex are also presented.  相似文献   

15.
The source of protons associated with the ligand loss channel of HX((n - 1)+) from [Pt(II)(dien)X](n+) (X = Cl, Br and I for n = 1 and X = NC(5)H(5) for n = 2) in the gas phase was investigated by deuterium-labelling studies. The results of these studies indicate that these protons originate from both the amino groups and the carbon backbone of the dien ligand. In some instances (e.g. X = Br and I), the protons lost from the carbon backbone can be even more abundant than the protons lost from the amino groups. The gas-phase substitution reactions of coordinatively saturated [Pt(II)(L(3))L(a)](2+) complexes (L(3) = tpy or dien) were also examined using ion-molecule reactions. The outcome of the ion-molecule reactions depends on both the ancillary ligand (L(3)) as well as the leaving group (L(a)). [Pt(II)(tpy)L(a)](2+) complexes undergo substitution reactions, with a faster rate when L(a) is a good leaving group, while the [Pt(II)(dien)L(a)](2+) complex undergoes a proton transfer reaction.  相似文献   

16.
Homogeneous electron transfer reactions of the Cu(II) complexes of 5,10,15,20-tetraphenylporphyrin (TPP) and 2,3,7,8,12,13,17,18-octaethylporphyrin (OEP) with various oxidizing reagents were spectrophotometrically investigated in acetonitrile. The reaction products were confirmed to be the pi-cation radicals of the corresponding Cu(II)-porphyrin complexes on the basis of the electronic spectra and the redox potentials of the complexes. The rate of the electron transfer reaction between the Cu(II)-porphyrin complex and solvated Cu(2+) was determined as a function of the water concentration under the pseudo first-order conditions where Cu(2+) is in large excess over the Cu(II)-porphyrin complex. The decrease in the pseudo first-order rate constant with increasing the water concentration was attributed to the stepwise displacement of acetonitrile in [Cu(AN)(6)](2+)(AN = acetonitrile) by water, and it was concluded that only the Cu(2+) species fully solvated by acetonitrile, [Cu(AN)(6)](2+), possesses sufficiently high redox potential for the oxidation of Cu(ii)-OEP and Cu(ii)-TPP. The reactions of the Cu(II)-porphyrin complexes with other oxidizing reagents such as [Ni(tacn)(2)](3+)(tacn = 1,4,7-triazacyclononane) and [Ru(bpy)(3)](3+)(bpy = 2,2'-bipyridine) were too fast to be followed by a conventional stopped-flow technique. Marcus cross relation for the outer-sphere electron transfer reaction was used to estimate the rate constants of the electron self-exchange reaction between Cu(II)-porphyrin and its pi-cation radical: log(k/M(-1) s(-1))= 9.5 +/- 0.5 for TPP and log(k/M(-1) s(-1))= 11.1 +/- 0.5 for OEP at 25.0 degrees C. Such large electron self-exchange rate constants are typical for the porphyrin-centered redox reactions for which very small inner- and outer-sphere reorganization energies are required.  相似文献   

17.
Sulfoxidation of thioanisoles by a non-heme iron(IV)-oxo complex, [(N4Py)Fe(IV)(O)](2+) (N4Py = N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine), was remarkably enhanced by perchloric acid (70% HClO(4)). The observed second-order rate constant (k(obs)) of sulfoxidation of thioaniosoles by [(N4Py)Fe(IV)(O)](2+) increases linearly with increasing concentration of HClO(4) (70%) in acetonitrile (MeCN)at 298 K. In contrast to sulfoxidation of thioanisoles by [(N4Py)Fe(IV)(O)](2+), the observed second-order rate constant (k(et)) of electron transfer from one-electron reductants such as [Fe(II)(Me(2)bpy)(3)](2+) (Me(2)bpy = 4,4-dimehtyl-2,2'-bipyridine) to [(N4Py)Fe(IV)(O)](2+) increases with increasing concentration of HClO(4), exhibiting second-order dependence on HClO(4) concentration. This indicates that the proton-coupled electron transfer (PCET) involves two protons associated with electron transfer from [Fe(II)(Me(2)bpy)(3)](2+) to [(N4Py)Fe(IV)(O)](2+) to yield [Fe(III)(Me(2)bpy)(3)](3+) and [(N4Py)Fe(III)(OH(2))](3+). The one-electron reduction potential (E(red)) of [(N4Py)Fe(IV)(O)](2+) in the presence of 10 mM HClO(4) (70%) in MeCN is determined to be 1.43 V vs SCE. A plot of E(red) vs log[HClO(4)] also indicates involvement of two protons in the PCET reduction of [(N4Py)Fe(IV)(O)](2+). The PCET driving force dependence of log k(et) is fitted in light of the Marcus theory of outer-sphere electron transfer to afford the reorganization of PCET (λ = 2.74 eV). The comparison of the k(obs) values of acid-promoted sulfoxidation of thioanisoles by [(N4Py)Fe(IV)(O)](2+) with the k(et) values of PCET from one-electron reductants to [(N4Py)Fe(IV)(O)](2+) at the same PCET driving force reveals that the acid-promoted sulfoxidation proceeds by one-step oxygen atom transfer from [(N4Py)Fe(IV)(O)](2+) to thioanisoles rather than outer-sphere PCET.  相似文献   

18.
The reaction of [Mn(dmptacn)OH(2)](2+) and [Ni(dmptacn)OH(2)](2+) (dmptacn = 1,4-bis(2-pyridylmethyl)-1,4,7-triazacyclononane) with each cyano ligand on ferricyanide results in the assembly of heteropolynuclear cations around the cyanometalate core and reduction of Fe(III) to Fe(II). In [[Mn(dmptacn)CN](6)Fe][ClO(4)](8) x 5H(2)O (1) and [[Ni(dmptacn)CN](6)Fe][ClO(4)](8) x 7H(2)O (2), ferrocyanide is encapsulated by either six Mn(II) or Ni(II) dmptacn moieties. These same products are obtained when ferrocyanide salts are used in the synthesis instead of ferricyanide. A binuclear complex, [[Mn(dmptacn)](2)CN][ClO(4)](3) (3), has also been formed from KCN and [Mn(dmptacn)OH(2)](2+). For both Mn(II) and Ni(II), the use of the pentadentate dmptacn ligand facilitates the formation of discrete cations in preference to networks or polymeric structures. 1 crystallizes in the trigonal space group R3 macro (No. 148) with a = 30.073(3) A, c = 13.303(4) A, and Z = 3 and is composed of heptanuclear [[Mn(dmptacn)CN](6)Fe](8+) cations whose charge is balanced by perchlorate counteranions. Weak H-bonding interactions between neighboring heptanuclear cations and some perchlorate counterions generate an infinite 1D chain of alternating [[Mn(dmptacn)CN](6)Fe](8+) and ClO(4)(-) ions running along the c-axis. Complex 3 crystallizes in the orthorhombic space group Pbcn (No. 60) with a = 16.225(3) A, b = 16.320(2) A, c = 18.052(3) A, and Z = 8 and is composed of binuclear [[Mn(dmptacn)](2)CN](3+) cations in which the cyano-bridged Mn(II) centers are in a distorted trigonal prismatic geometry. Variable temperature magnetic susceptibility measurements have revealed the presence of a weak ferromagnetic interaction between the paramagnetic Mn(II) centers in 1, mediated either by the -NC-Fe-CN- bridging units or by Mn-NH...ClO(4-)...NH-Mn intercluster pathways.  相似文献   

19.
《Polyhedron》1999,18(8-9):1229-1234
We report the synthesis of a series of macrocyclic ligands based on N,N′,N″-1,4,7-triazacyclononane with pendant alkyne arms. N,N′,N″-tris-(3-prop-1-yne)-1,4,7-triazacyclononane (L) has three pendant alkyne arms while N-(4-but-2-yne)1,4,7-triazacyclononane (L′) and N-(5-pent-2-yne)-1,4,7-triazacyclononane (L″) each have a single pendant arm. The ligands form coordination complexes with Cu(II), Ni(II), Co(II) and Mo(0). The crystal structures of [CuL2′][PF6]2, [NiL2′][ClO4]2 and CuL″Cl2 are presented and discussed.  相似文献   

20.
Summary [(R)-2-Methyl-1,4,7-triazacyclononane][1,1,1-tris(aminomethyl)ethane]cobalt(III) has been prepared and separated into two isomers which show weak Cotton effects in the1A11T1 region (d-electron transition) compared with that of bis[(R)-2-methyl-1,4,7-triazacyclononane]cobalt(III). The effect is comparable to that of tetraammine[(R)-1,2-diamino propane]cobalt(III). The circular dichroism spectra of the mono complex change markedly upon addition of sodium sulphate. The chelate rings are more flexible in the mono than in the bis complex. Some other related mono[(R)-2-methyl 1,4,7-triazacyclononane]cobalt(III) and [(R)-2-methyl-1,4,7 triazacyclononane][1,1,1-tris(aminomethyl)ethaneI nickel (II) complexes have also been prepared and characterized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号