首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
利用Anton PaarDMA55和Ubbelohde黏度管分别测定了正辛烷和正癸烷两种正构烷烃与挂式四氢双环戊二烯{C10H16, exo-tricycle[5.2.1.02.6]decane(JP-10)}组成的二元体系在298.15 K下的密度和黏度, 计算了正构烷烃/JP-10二元体系的超额摩尔体积、组分的表观摩尔体积和偏摩尔体积等体积性质以及组分对超额体积的贡献, 研究结果表明, 烷烃的加入使得二元体系的超额体积均为负值. 根据Eyring液体黏性流动理论, 关联了二元体系的黏滞性活化参数, 结果表明, 熵驱动起主要作用. 从分子间相互作用角度讨论了二元体系体积性质的变化规律.  相似文献   

2.
利用Anton Paar DMA4500振动管密度计测量了293.15 K时二元体系甲苯-N,N-二甲基甲酰胺(C6H5CH3-DMF)在C6H5CH3(摩尔分数0~1)中的溶液密度, 利用最小二乘法关联了溶液密度与组成的函数关系, 关联精度为±0.005 kg/m3. 通过密度数据分别计算了二元体系中C6H5CH3和DMF的表观摩尔体积, 并利用非线性最小二乘拟合法, 分别拟合得到了优化的C6H5CH3和DMF的表观摩尔体积和摩尔分数的函数关系, 以及C6H5CH3和DMF的表观摩尔体积和质量分数的函数关系. 通过对函数关系的极限运算得到了C6H5CH3和DMF的极限偏摩尔体积、标准偏摩尔体积和摩尔体积. 还计算了不同组分下体系的超额摩尔体积, 数据可用四参数Redlich-Kister方程关联拟合得到方程系数. 计算关联了C6H5CH3和DMF的超额偏摩尔体积与摩尔分数的关系. 由三参数多项式极限法得到组分的极限超额偏摩尔体积值与Redlich-Kister系数法得到的值在误差范围内一致.  相似文献   

3.
测定了N-甲基哌嗪+乙酸乙酯和N-甲基哌嗪+乙酸丁酯2个二元混合体系在298.15,303.15,308.15和313.15 K的密度和黏度数据,并计算了N-甲基哌嗪+酯二元混合体系的超额摩尔体积(VEm)和黏度偏差(Δη),用Redlich-Kister多项式关联了二元体系的超额摩尔体积与组成的关系,用4个半经验公式关联黏度数据并关联了二元体系的黏滞性活化参数.结果表明,N-甲基哌嗪+乙酸乙酯和N-甲基哌嗪+乙酸丁酯二元体系在所测温度范围内的超额摩尔体积为正值,黏度偏差为负值,且二元混合体系在混合过程中焓驱动居于主导地位.  相似文献   

4.
二元体系C6H6-DMF在293.15 K下的体积性质   总被引:2,自引:2,他引:0  
利用Anton Paar DMA4500振动管密度计, 测量了293.15 K时二元体系C6H6-DMF(苯-N,N-二甲基甲酰胺)溶液的密度, 利用最小二乘法确立了溶液密度与组成的函数关系. 利用密度数据分别计算了二元体系中C6H6和DMF的表观摩尔体积, 并利用非线性最小二乘拟合法, 分别拟合得到了优化的C6H6和DMF的表观摩尔体积和摩尔分数的函数关系, 以及C6H6和DMF的表观摩尔体积和质量分数的函数关系. 通过对函数关系的极限运算得到了C6H6和DMF的标准偏摩尔体积和摩尔体积. 此外, 还计算了不同组分下体系的超额摩尔体积, 数据可用四参数Redlich-Kister方程很好地关联拟合, 得到方程系数及体系的超额摩尔体积极值位置.  相似文献   

5.
测定了正壬烷、 十一烷、 十二烷、 十三烷和十四烷5种正构烷烃与挂式四氢双环戊二烯(C10H16, JP-10)组成的二元体系在293.15, 298.15, 303.15和313.15 K下的黏度和密度. 利用所得实验数据分别计算了各个二元体系的体积性质, 从分子结构和分子间相互作用角度讨论了二元体系体积性质的变化规律. 根据Eyring液体黏性流动理论, 关联了二元体系的黏滞性活化参数. 结果表明, 焓驱动居于主导地位.  相似文献   

6.
用比重瓶法测定了293.15 K时1-甲基咪唑醋酸盐([Mim]Ac)/1,3-二甲基咪唑醋酸盐([Mmim]Ac)/1-乙基-3-甲基咪唑醋酸盐([Emim]Ac)-乙醇(EtOH)二元体系在全组成范围内的密度.计算出[Mim]Ac/[Mmim]Ac/[Emim]Ac和EtOH的表观摩尔体积和体系的超额摩尔体积.用三参数多项式关联拟合了表观摩尔体积与摩尔分数的关系,外推出组分的极限偏摩尔体积和摩尔体积.[Mim]Ac/[Mmim]Ac/[Emim]Ac和EtOH的摩尔体积的外推值与实验值分别在±0.07和±0.04 cm3/mol范围内相一致.计算出了[Mim]Ac/[Mmim]Ac/[Emim]Ac和EtOH分别在无限稀溶液中的溶剂化系数.用Redlich-Kister方程关联拟合了超额摩尔体积与摩尔分数的关系.分别根据极限偏摩尔体积、摩尔体积与极限偏摩尔体积的差值、溶剂化系数和超额摩尔体积对照讨论了分子间相互作用的强弱.结果显示,在[Mim]Ac/[Mmim]Ac/[Emim]Ac的浓度无限稀溶液中,[Mim]Ac/[Mmim]Ac/[Emim]Ac-EtOH分子对间相互作用的强弱顺序为[Mim]Ac-EtOH[Mmim]Ac-EtOH[Emim]Ac-EtOH;在EtOH的浓度无限稀溶液中,以及体系中[Mim]Ac/[Mmim]Ac/[Emim]Ac的摩尔分数在0.15~0.95间时,[Mim]Ac/[Mmim]Ac/[Emim]Ac-EtOH分子对间相互作用的强弱顺序都为[Emim]Ac-EtOH[Mmim]Ac-EtOH[Mim]Ac-EtOH.  相似文献   

7.
用比重瓶法测定了293.15 K时1-甲基咪唑醋酸盐([Mim]Ac)/1,3-二甲基咪唑醋酸盐([Mmim]Ac)/1-乙基-3-甲基咪唑醋酸盐([Emim]Ac)-乙醇(EtOH)二元体系在全组成范围内的密度. 计算出[Mim]Ac/[Mmim]Ac/[Emim]Ac和EtOH的表观摩尔体积和体系的超额摩尔体积. 用三参数多项式关联拟合了表观摩尔体积与摩尔分数的关系,外推出组分的极限偏摩尔体积和摩尔体积. [Mim]Ac/[Mmim]Ac/[Emim]Ac和EtOH的摩尔体积的外推值与实验值分别在±0.07和±0.04 cm3/mol范围内相一致. 计算出了[Mim]Ac/[Mmim]Ac/[Emim]Ac和EtOH分别在无限稀溶液中的溶剂化系数. 用Redlich-Kister 方程关联拟合了超额摩尔体积与摩尔分数的关系. 分别根据极限偏摩尔体积、摩尔体积与极限偏摩尔体积的差值、溶剂化系数和超额摩尔体积对照讨论了分子间相互作用的强弱. 结果显示,在[Mim]Ac/[Mmim]Ac/[Emim]Ac的浓度无限稀溶液中,[Mim]Ac/[Mmim]Ac/[Emim]Ac-EtOH分子对间相互作用的强弱顺序为[Mim]Ac-EtOH>[Mmim]Ac-EtOH >[Emim]Ac-EtOH;在EtOH的浓度无限稀溶液中,以及体系中[Mim]Ac/[Mmim]Ac/[Emim]Ac的摩尔分数在0.15~0.95间时,[Mim]Ac/[Mmim]Ac/[Emim]Ac-EtOH分子对间相互作用的强弱顺序都为[Emim]Ac-EtOH>[Mmim]Ac-EtOH>[Mim]Ac-EtOH.  相似文献   

8.
利用精密数字密度计测定了298.15和308.15 K甘氨酰甘氨酸在KCl-水和NaCl-水混合溶剂中的密度, 计算了甘氨酰甘氨酸的表观摩尔体积VΦ和极限偏摩尔体积VΦ?, 得到了其由纯水溶剂转移至混合溶剂中的迁移偏摩尔体积ΔtrsVΦ?和理论水化数Nh. 正的迁移偏摩尔体积说明在本文所研究的浓度范围内盐溶液可以提高球形蛋白的结构稳定性. 结果表明, 温度对迁移偏摩尔体积的影响很小; 溶液中离子与甘氨酰甘氨酸带电中心间的相互作用占主导地位. 利用共球交盖模型对结果进行了讨论.  相似文献   

9.
在常压,298.15K~353.15K条件下,采用U形振动管密度计测定了对甲氧基苯甲醛-N,N-二甲基甲酰胺二元物系的密度,采用乌氏黏度计测定其黏度;并由密度和黏度数据分别计算了该二元物系超额摩尔体积VE和混合黏度的变化Δη.在不同的温度和组成下超额摩尔体积和混合黏度的变化都是负值,同时对不同温度下的超额摩尔体积与组成的关系以及混合黏度的变化与组成的关系都按Redlich-Kister方程进行了拟合,计算值与实验值的最大标准偏差小于7%.  相似文献   

10.
本文测定了温度288.15~333.15 K和常压下溴化1-己基/辛基-3-甲基咪唑离子液体([C_6mim]Br/[C_8mim]Br)+1,2-丙二醇/1-丙醇二元体系的密度(ρ)、折光率(nD)和黏度(η),计算获得了超额摩尔体积(V_m~E)和折光率偏差(Δn_D),并用Redlich-Kister方程对衍生性质数据进行拟合.密度、折光率和黏度值随组成的变化用多项式方程进行了拟合,讨论了醇、离子液体以及温度对二元体系物化性质的影响.  相似文献   

11.
The densities of ethylene glycol-dimethylsulfoxide binary mixtures were measured over the temperature range 278–323.15 K at atmospheric pressure using a vibrational densimeter. The excess molar volumes, apparent molar volumes, partial molar volumes of mixture components, volumetric thermal expansion coefficients, and partial molar volumetric thermal expansion coefficients were calculated. The excess molar volumes were described by the Redlich-Kister equation, and the partial molar volumes were calculated by two methods. The density-composition dependence contained a weak maximum, which disappeared as the temperature increased. The excess molar volumes were negative, and deviations from ideality increased as the temperature grew.  相似文献   

12.
The densities of binary systems of difurylmethane (DFM) in methanol have been measured with an Anton Parr DMA 4500 vibrating-tube densimeter over the entire composition range at intervals of 5 K in the temperature range between 288.15 and 308.15 K. Excess molar volumes of the mixture, apparent molar volumes of DFM, and excess partial molar volumes of both components have been calculated to provide insight into the intermolecular interaction present in the mixtures investigated. Excess molar volumes have been fitted to a Redlich–Kister equation and they exhibited negative deviations from ideal behavior. Both the apparent molar volume of DFM and excess partial molar volumes of DFM and methanol exhibit a dependence on composition but are less sensitive to temperature.  相似文献   

13.
The densities of binary and ternary mixtures of benzyl alcohol + ethyl butyrate and/or diethyl malonate were measured at T = (293.15–313.15) K and p = 0.087 MPa. From these data, the excess molar volumes, partial molar volumes, excess partial molar volumes, partial molar volumes at infinite dilution, thermal expansion coefficients and their excess values were calculated. The Redlich–Kister equations were fitted to the excess molar volumes data. The results show that the excess molar volumes for all considered binary and ternary systems are negative and decrease with increasing temperature. The same behavior was observed for the excess thermal expansion coefficients. Data for excess volumes in ternary system were fitted with the Nagata–Tamura and Cibulka models for which the Cibulka equation showed better fitting. The intermolecular interactions between molecules in these mixtures are discussed and explained based on these experimental data.  相似文献   

14.
Supercritical fluids (SCFs) have many unique properties1. However, nearly all of the features are related with the aggregation or clustering of the molecules in the fluids. Some researchers have reported that the partial molar volumes (PMVs) of the solutes in dilute supercritical (SC) solutions are large negative values1-4, which is different from common liquid solutions. Negative PMV of a solute in SC solution results from the fact that the local density of the solvent surrounding the so…  相似文献   

15.
超临界CO2-溶质二元系的密度及溶质的偏摩尔体积   总被引:5,自引:0,他引:5  
在308.15和318.15K温度下,80-170bar压力范围内,测定了CO2-乙醇、CO2-丙酮和CO2-正庚烷混合物的密度,溶质的浓度范围是0-1.3mol·L-1.在此基础上,计算了溶质的偏摩尔体积,系统地研究了温度、压力和溶质浓度对二元混合物密度的影响,并从压力和溶质浓度对溶质偏摩尔体积影响的角度研究体系中的分子间相互作用.  相似文献   

16.
用Pitzer理论预测混合电解质溶液的偏摩尔体积   总被引:3,自引:0,他引:3  
用Pitzer理论研究了混合电解质溶液的偏摩尔体积,建立了偏摩尔体积的预测方法,并利用所得电解质溶液的表观摩尔体积的Pitzer参数预测了HNO3-UO2(NO3)2-H2O、KCl-Na2SO4-H2O、NaCl-Na2SO4-H2O、NaCl-CaCl2-H2O、KCl-CaCl2-H2O、KCl-MgCl2-H2O和KCl-NaBr-H2O共7个系统4种类型的混合溶液的偏摩尔体积。  相似文献   

17.
In this communication, we report experimental density data for the binary mixtures of (water + tetrahydrofuran) and (water + tetra-n-butyl ammonium bromide) at atmospheric pressure and various temperatures. The densities were measured using an Anton Paar™ digital vibrating-tube densimeter. For the (tetrahydrofuran + water) system, excess molar volumes have been calculated using the experimental densities and correlated using the Redlich–Kister equation. The Redlich–Kister equation parameters have been adjusted on experimental results. The partial molar volumes and partial excess molar volumes at infinite dilution have also been calculated for each component. A simple density equation was finally applied to correlate the measured density of the (tetra-n-butyl ammonium bromide + water) system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号