首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
The physisorption of hydrogen stored in armchair multi-walled carbon nanotubes (MWCNTs) is simulated by the grand canonical Monte Carlo (GCMC) method on the condition of 10 MPa at normalt emperature. Hydrogen-hydrogen and hydrogen-carbon interactions are both modeled with Lennard-Jones potential. The hydrogen storage in double-walled carbon-nanotubes (DWCNTs) has been investigated on the condition that the internal or external radius is changed while the other radius remains constant. The results show that hydrogen molecules are mostly absorbed near the tube walls, and the hydrogens to rage capacityisim proved effectively when the difference between the internal radius and the external radius increases from 0.34 to 0.61 or 0.88 nm. Its simple theoretic explanation also is given. Further more, the capacity of hydrogen physisorbed in there-walled carbon nanotubes (TWCNTs) is calculated when the wall-wall distance is 0.34, 0.61 and 0.88 nm respectively. Then its hydrogen storage capacity is compared with that of single-walled carbon nanotubes (SWCNTs) and DWCNTs, and it is discovered that the capacity of hydrogen physisorbed in MWCNTs decreases as the number of wall increases.  相似文献   

2.
述评碳纳米管储氢研究*   总被引:10,自引:0,他引:10  
周亚平  冯奎  孙艳  周理 《化学进展》2003,15(5):345-350
碳纳米管因被认为可能是氢能的主要载体而备受关注,但几年来的文献报道不尽一致.本文评述了关于单壁和多壁碳纳米管对氢气的吸附实验和模拟计算研究结果,探讨了碳纳米管作为储氢材料的可行性.  相似文献   

3.
用分子动力学(MD)模拟方法系统研究了结构Ⅰ型(SⅠ)和结构H型(SH)氢气水合物中氢气的占据情况并确定了氢气水合物的稳定结构: SⅠ水合物氢气分子数小胞中为2, 大胞中为3; SH水合物氢气分子数小胞中为2, 中胞中为2, 大胞中为11. 分析了稳定情况下水合物各胞腔内氢气分子之间的径向分布函数(RDF), 得出了氢气分子在各胞腔内的稳定位置. 由稳定位置得到了稳定结构下氢气水合物的储氢质量分数: SⅠ为5.085%, SH为6.467%. 与实验对比得出结论: SH水合物稳定结构下的储氢能力最强.  相似文献   

4.
本文首次研究了碳纳米管-MmNi3.6Co0.7Al0.3Mn0.4复合储氢材料的制备及其电化学性能,在250mA/g放电的条件下,其电化学储氢量达到320mAh/g,相同条件下MmNi3.6Co0.7Al0.3Mn0.4储氢量为270mAh/g.通过循环伏安法研究氢在复合电极上电化学特性表明,碳纳米管与MmNi3.6Co0.7Al0.3Mn0.4的复合促进了氢的吸附.  相似文献   

5.
异型碳纳米管储氢性能的分子动力学模拟研究   总被引:4,自引:0,他引:4  
吴红丽  邱介山  郝策  唐祯安 《化学学报》2005,63(11):990-996
采用分子动力学(MD)方法对三种理想的Y型碳纳米管[记为Y(4,4), Y(6,6), Y(10,0)]和三种L型碳纳米管[记为L(9,0), L(6,6), L(10,0)]之储氢性能进行了模拟研究, 并与相应的直线型碳纳米管的储氢能力进行了比较, 同时考察了温度、碳纳米管的直径和螺旋性以及缺陷的位置和大小对异型碳纳米管储氢性能的影响. 结果表明, 在室温和低温条件下, 异型碳纳米管的储氢量高于直线型碳纳米管的储氢量, 且其储氢量大小随温度的降低和碳管直径的增大而增加, 椅式碳纳米管的储氢性能优于齿式碳纳米管, 而缺陷的位置和大小对异型碳管之储氢性能的影响则因碳管的形貌和直径的大小不同而存在差异.  相似文献   

6.
多壁碳纳米管的改性及其储氢性能研究   总被引:10,自引:0,他引:10  
考察了空气处理、混酸处理、H2O2处理和等离子体活化等化学改性和多种活性金属修饰对碳纳米管储氢性能的影响,采用TPD-H2评价装置测试了不同样品吸附的氢气在程序升温后的脱附情况,用峰面积和氢气的校正因子计算出样品吸附氢气的体积,从而计算出碳纳米管的储氢容量.实验结果表明,化学改性和金属修饰均能明显提高碳纳米管的储氢性能,其中经过混合酸和H2O2化学处理并负载质量分数为20%Ni的碳纳米管,在常温常压下的氢气储存的质量分数达到2.55%,比未做任何处理的碳纳米管的储氢容量提高了7倍.  相似文献   

7.
氢气在碳纳米管基材料上的吸附-脱附特性   总被引:16,自引:0,他引:16  
利用高压容积法测定多壁碳纳米管(MWCNTs)及钾盐修饰的相应体系(K+-MWCNTs)的储氢容量,并用程序升温脱附(TPD)方法表征研究氢气在MWCNTs基材料上的吸附-脱附特性.结果表明,在经纯化MWCNTs上,室温、9.0 MPa实验条件下氢的储量可达1.51%(质量分数);K+盐对MWCNTs的修饰对增加其储氢容量并无促进效应,但相应化学吸附氢物种的脱附温度有所升高;K+的修饰也改变了MWCNTs表面原有的疏水性质.在低于723 K的温度下,H2/MWCNTs体系的脱附产物几乎全为氢气;773 K以上高温脱附产物不仅含H2,也含有CH4、C2H4、C2H2等C1/C2烃混合物;H2/K+-MWCNTs储氢试样的脱附产物除占主体量的H2及少量C1/C2烃混合物外,还含水汽,其量与吸附质H2源水汽含量密切相关.H2在碳纳米管基材料上吸附兼具非解离 (即分子态) 和解离(即原子态)两种形式.  相似文献   

8.
定向多壁碳纳米管电化学储氢研究   总被引:6,自引:0,他引:6  
利用恒流充放电、循环伏安曲线(CV)和电化学阻抗技术(EIS)等方法对定向多壁碳纳米管(AMWCNTs)储氢的电化学行为及其储氢机制进行了探讨.研究表明,定向AMWCNTs-Cu电极有较高的电化学储氢性能,其储氢容量在1500mA/g的电流密度下可以达到1162mA·h/g.定向AMWCNTs的电化学储氢能力强与其空间结构有关,而铜粉的加入有利于提高碳纳米管的电催化反应表面积和电极电化学反应活性,有利于氢在碳纳米管中扩散,从而提高了碳纳米管电极材料的储氢量.  相似文献   

9.
利用空气氧化和稀酸回流纯化单壁碳纳米管,用高分辨透射电镜、拉曼光谱对碳纳米管进行了表征.在分子模拟中,非极性氢气、甲烷分子采用单点Lennard-Jones球形分子模型,流体分子与C原子之间相互作用采用虚拟原子模型.以液氮温度下碳纳米管对氮气的吸附等温线实验数据为依据,利用巨正则蒙特卡罗方法模拟得到了碳纳米管的孔径分布,主要集中在6nm.计算了常温常压下碳纳米管中甲烷及氢气的吸附等温线,298K及0.1MPa压力下,氢气的吸附量达到0.015%(质量分数),甲烷在样品中的吸附量可以达到0.5%(质量分数).模拟研究结果表明碳纳米管可以用作固相微萃取涂层材料.  相似文献   

10.
制备了用于测定邻苯二酚的单壁碳纳米管-氧化石墨烯复合修饰玻碳电极.用循环伏安法研究了邻苯二酚在该电极上的电化学行为.结果表明,该修饰电极对邻苯二酚具有良好的电催化性能.在最佳实验条件下,采用差分脉冲伏安法对邻苯二酚进行了测定,其氧化峰电流与邻苯二酚浓度在2×10~(-6)~1×10~(-4) mol/L范围内呈线性关系,相关系数为0.996 2,检出限为4×10~(-7) mol/L.该电极具有良好的重现性,用于模拟废水中邻苯二酚的测定结果令人满意.  相似文献   

11.
活性碳纤维阴极电芬顿反应降解微囊藻毒素研究   总被引:5,自引:0,他引:5  
以具有高比表面积的活性碳纤维作为阴极,通过电芬顿反应降解水中微囊藻毒素(MCRR,MCLR)的电化学方法系统考察了电流密度、pH值和Fe2+浓度等因素对微囊藻毒素降解效果的影响.实验结果表明,在Fe2+浓度为1.0mmol/L和电流密度为6.6mA/cm2条件下,电化学处理60min,MCRR(8.81mg/L)去除率为75%,MCLR(6.36mg/L)去除率为94%.证明过氧化氢可以通过电化学还原在活性碳纤维阴极表面高效产生,微囊藻毒素可被高效降解去除.  相似文献   

12.
通过电沉积金属铜于SWNTs/Nafion修饰的玻碳电极表面构建了一种经济且简单易制备的非酶尿酸传感器.采用扫描电镜和能谱仪表征了纳米材料的形貌和成分,并考察了不同扫速和pH值对修饰电极的影响.在优化条件下,尿酸的线性范围为0.1~1000 μmol·L-1,检出限(S/N =3)为0.058 5iμmol·L-1.采用标准加入法检测人体血清中尿酸的回收率为97.2%~103.9%,相对标准偏差(RSD)为0.04%~0.11%.该非酶法与GOD-POD酶法的结果高度一致,且传感器经济易制备、灵敏性高、稳定性好、重现性高.  相似文献   

13.
豆荚型纳米材料C60@SWNTs的制备和表征   总被引:1,自引:0,他引:1  
通过气相扩散的方法将C60填入单壁碳纳米管(SWNTs),制备了豆荚型纳米材料C60@SWNTs,并利用高分辨电子显微镜(HRTEM)和拉曼光谱(Raman spectra)对其进行了表征.结果均证明C60以较高的比例填充入单壁碳纳米管中.HRTEM结果表明,填入单壁碳纳米管的C60之间的距离与面心立方C60晶体中C60之间的距离有细微的差别,说明C60分子与SWNTs间存在弱的范德华相互作用.此外,还观察到在电子束的照射下,C60在SWNT中两两聚合的现象.  相似文献   

14.
碳纳米管的电化学贮氢性能研究   总被引:13,自引:0,他引:13  
研究了碳纳米管电极的电化学性能 ,其电化学储氢量达到 2 0 0mAh·g 1且具有高的电化学活性和良好的循环寿命 .采用循环伏安法研究了氢在碳纳米管电极上吸附 /氧化机理 .  相似文献   

15.
采用原位脱氯化氢缩合聚合法制备了聚(2-甲氧基-5-辛氧基)对苯乙炔/单壁碳纳米管(PMOCOPV/SWNTs)复合材料. 红外光谱和拉曼光谱证实了在SWNTs表面的包覆层为PMOCOPV. 高分辨透射电子显微镜观察发现, PMOCOPV/SWNTs复合材料直径为4~7 nm, 其中PMOCOPV包覆层厚度约为2~5 nm. 紫外-可见吸收光谱表明, 随着SWNTs含量的增加, PMOCOPV/SWNTs的吸收发生蓝移且强度提高. 荧光光谱研究表明, 随着SWNTs含量的增加, PMOCOPV/SWNTs的最大发射波长发生蓝移且强度减小, SWNTs与PMOCOPV之间形成了光致电子转移体系, 使π电子离域程度增加, 导致荧光量子效率降低. 根据Eg与入射光子能量hν的关系, 拟合了PMOCOPV/SWNTs薄膜的光学禁带宽度, 发现随着SWNTs含量的增加, Eg逐渐减小. 采用简并四波混频方法测试其三阶非线性极化率χ(3), 结果表明, 随着SWNTs含量的增加, PMOCOPV/SWNTs复合体的非线性光学响应逐渐增强, 说明PMOCOPV与SWNTs之间形成了分子间光致电子转移体系, 产生了复杂的分子间π-π电子非线性运动.  相似文献   

16.
氢在多壁碳纳米管上吸附行为研究   总被引:3,自引:0,他引:3  
根据热力学平衡原理推导了通用吸附等温方程.通过比较氢在碳纳米管和炭狭缝孔上的高阶维里吸附系数,分析了77~297 K温度区间,温度、管径(孔宽)对碳纳米管、炭狭缝孔吸附空间储氢容量的影响,并由氢在石墨平面上的最大吸附容量计算了本次试验多壁碳纳米管(MWCNTs)在各平衡温度时的最大氢吸附容量.运用确定参数后的吸附等温方程,线性回归分析了氢在本次试验MWCNTs上的吸附数据.结果表明,在160~180 K温度区间,管内被吸附氢分子之间由于吸附受压产生的排斥能出现极大值;随着温度升高,氢分子之间以吸引力为主,提高氢气压力后才发生明显吸附.  相似文献   

17.
碳纳米管贮氢研究进展   总被引:4,自引:0,他引:4  
唐水花  张良辅  于作龙 《化学通报》2003,66(10):687-695
综述了碳纳米管在实验和理论方面的贮氢研究工作。不同科研工作者得到的实验结果很不一致,重量百分比分布在67%~0.01%之间。理论模拟结果差别相对小一些。碳纳米管中的氢吸附受有效表面积和孔体积的强烈影响,单壁碳纳米管堆积的几何形状在氢吸附中也起着重要作用。不少研究者认为碳纳米管并不是适合的贮氢材料。其贮氢量在1(wt)%以下。  相似文献   

18.
使用自制的钴催化裂解碳氢气法制备多壁纳米碳管,并对其进行退火、掺杂等一系列预处理,然后使用高压高纯氢源,在中压(12 MPa)和室温条件下,进行钾掺杂多壁纳米碳管的储氢性能实验.结果表明:预处理对纳米碳管的储氢性能有很大影响.实验条件下,经过氮气退火,并在1.0 mol/L硝酸钾溶液中掺杂的多壁纳米碳管吸氢量最大(H/C质量分数为3.2%).上述样品在室温下的放氢量一般不超过其吸氢量的50.8%.  相似文献   

19.
Rubidium dihydrogentricyanomelaminate semihydrate Rb[H2C6N9] · 1/2 H2O was obtained as colorless rod‐like single crystals from a solution of Rb3[C6N9] · H2O and 0.1 M HCl after water evaporation at room temperature. According to the X‐ray single‐crystal structure determination (Rb[H2C6N9] · 1/2 H2O: C2/c (no. 15), a = 2007.4(3) pm, b = 512.2(1) pm, c = 2168.0(4) pm, β = 111.66(2)°, Z = 8, R1 = 0.059, 2391 independent reflections, 159 parameters) Rb+ and cyclic planar [H2C6N9] ions as well as hydrate water molecules occur in the crystal. Rb[H2C6N9] · 1/2 H2O was investigated by FTIR and Raman spectroscopy, TG measurements and temperature‐dependent X‐ray powder diffraction. According to the thermoanalytic investigations, dehydration of Rb[H2C6N9] · 1/2 H2O starts above 60 °C and is finished below 250 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号