首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interactions between metal ions and amino acids are common both in solution and in the gas phase. The effect of metal ions and water on the structure of L-arginine is examined. The effects of metal ions (Li(+), Na(+), K(+), Mg(2+), Ca(2+), Ni(2+), Cu(2+), and Zn(2+)) and water on structures of Arg x M(H2O)m , m = 0, 1 complexes have been determined theoretically by employing the density functional theories (DFT) and using extended basis sets. Of the three stable complexes investigated, the relative stability of the gas-phase complexes computed with DFT methods (with the exception of K(+) systems) suggests metallic complexes of the neutral L-arginine to be the most stable species. The calculations of monohydrated systems show that even one water molecule has a profound effect on the relative stability of individual complexes. Proton dissociation enthalpies and Gibbs energies of arginine in the presence of the metal cations Li(+), Na(+), K(+), Mg(2+), Ca(2+), Ni(2+), Cu(2+), and Zn(2+) were also computed. Its gas-phase acidity considerably increases upon chelation. Of the Lewis acids investigated, the strongest affinity to arginine is exhibited by the Cu(2+) cation. The computed Gibbs energies DeltaG(o) are negative, span a rather broad energy interval (from -150 to -1500 kJ/mol), and are appreciably lowered upon hydration.  相似文献   

2.
The determination of metal ions by capillary isotachophoresis and the complexation equilibria between metal ions and polyaminopolycarboxylic acids has been investigated. A seven-component mixture of metal ions can be separated in 45% v/v acetone-water medium when EDTA or DCTA is used as the terminating ion. Linear calibration graphs are obtained for a standard mixture of Mn(+), Cu(2+), Zn(2+), Cd(2+), Pb(2+) and Fe(3+) in the range 0.5-5.0 nmole, with relative standard deviations of 1.0% or better. The effective mobilities of the Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) complexes increase in parallel with the stability constants, except for the Cu(II) complexes. It is concluded that the abnormal behaviour of the Cu(II) complexes may be attributed to a difference in steric configuration.  相似文献   

3.
Development and applications of fluorescent indicators for Mg2+ and Zn2+   总被引:1,自引:0,他引:1  
In a study of the spectroscopic behavior of two Schiff base derivatives, salicylaldehyde salicylhydrazone (1) and salicylaldehyde benzoylhydrazone (2), Schiff base 1 has high selectivity for Zn(2+) ion not only in abiotic systems but also in living cells. The ion selectivity of 1 for Zn(2+) can be switched for Mg(2+) by swapping the solvent from ethanol-water to DMF (N,N-dimethylformamide)-water mixtures. Imine 2 is a good fluorescent probe for Zn(2+) in ethanol-water media. Many other ions tested, such as Li(+), Na(+), Al(3+), K(+), Ca(2+), Cr(3+), Mn(2+), Fe(3+), Co(2+), Ni(2+), Cu(2+), Ag(+), Cd(2+), Sn(2+), Ba(2+), Hg(2+), and Pb(2+), failed to induce any spectral change in various solvents. The selectivity mechanism of 1 and 2 for metal ions is based on a combinational effect of proton transfer (ESPT), C═N isomerization, and chelation-enhanced fluorescence (CHEF). The coordination modes of the complexes were investigated.  相似文献   

4.
1-((E)-(2-((2-nitrobenzyl)(2-((E)-(2-hydroxynaphthalen-1-yl)methyleneamino)ethyl)amino)ethylimino)methyl)naphthalen-2-ol (H(2)L), The new compound featuring two naphthalene units was synthesized and characterized. We find that H(2)L has high selectivity and sensitivity to detect Zn(2+) ion over other metal ions such as Na(+), Ag(+), Cd(2+), Co(2+), Cr(3+), Cu(2+), Hg(2+), Mn(2+), Ni(2+), Fe(3+), and the sensitivity is about 10(-7)M. The fluorescent changes of H(2)L upon the addition of cations Zn(2+) and triethylamine is utilized as an AND logic gate at the molecular level, using Zn(2+) and triethylamine as chemical inputs and the fluorescence intensity signal as output.  相似文献   

5.
6.
The complexes formed by the simplest amino acid, glycine, with different bare and hydrated metal ions (Mn(2+), Fe(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+)) were studied in the gas phase and in solvent in order to give better insight into the field of the metal ion-biological ligand interactions. The effects of the size and charge of each cation on the organization of the surrounding water molecules were analyzed. Results in the gas phase showed that the zwitterion of glycine is the form present in the most stable complexes of all ions and that it usually gives rise to an eta(2)O,O coordination type. After the addition of solvation sphere, a resulting octahedral arrangement was found around Ni(2+), Co(2+), and Fe(2+), ions in their high-spin states, whereas the bipyramidal-trigonal (Mn(2+) and Zn(2+)) or square-pyramidal (Cu(2+)) geometries were observed for the other metal species, according to glycine behaves as bi- or monodentate ligand. Despite the fact that the zwitterionic structure is in the ground conformation in solution, its complexes in water are less stable than those obtained from the canonical form. Binding energy values decrease in the order Cu(2+) > Ni(2+) > Zn(2+) approximately Co(2+) > Fe(2+) > Mn(2+) and Cu(2+) > Ni(2+) > Mn(2+) approximately Zn(2+) > Fe(2+) > Co(2+) for M(2+)-Gly and Gly-M(2+) (H(2)O)(n) complexes, respectively. The nature of the metal ion-ligand bonds was examined by using natural bond order and charge decomposition analyses.  相似文献   

7.
A weakly fluorescent thiosemicabazone (L(1)H) was found to be a selective optical and "turn-on" fluorescent chemodosimeter for Cu(2+) ion in aqueous medium. A significant fluorescence enhancement along with change in color was only observed for Cu(2+) ion; among the other tested metal ions (viz. Na(+), K(+), Mg(2+), Ca(2+), Cr(3+), Zn(2+), Cd(2+), Hg(2+), Pb(2+), Ag(+), Ni(2+), Co(2+), Fe(3+) and Mn(2+)). The Cu(2+) selectivity resulted from an oxidative cyclization of the weak fluorescent L(1)H into highly fluorescent rigid 4,5-dihydro-5,5-dimethyl-4-(naphthalen-5-yl)-1,2,4-triazole-3-thione (L(2)). The signaling mechanism has been confirmed by independent synthesis with detail characterization of L(2).  相似文献   

8.
Cation interactions with π-systems are a problem of outstanding contemporary interest and the nature of these interactions seems to be quite different for transition and main group metal ions. In this paper, we have systematically analyzed the contrast in the bonding of Cu(+) and main group metal ions. The molecular structures and energetics of the complexes formed by various alkenes (A = C(n)H(2n), n = 2-6; C(n)H(2n- 2), n = 3-8 and C(n)H(2n + 2), n = 5-10) and metal ions (M = Li(+), Na(+), K(+), Ca(2+), Mg(2+), Cu(+) and Zn(2+)) are investigated by employing ab initio post Hartree-Fock (MP2/6-311++G**) calculations and are reported in the current study. The study, which also aims to evaluate the effect of the size of the alkyl portion attached to the π-system on the complexation energy, indicates a linear relationship between the two. The decreasing order of complexation energy with various metal ion-alkene complexes follows the order Zn(2+)-A > Mg(2+)-A > Ca(2+)-A > Cu(+)-A > Li(+)-A > Na(+)-A > K(+)-A. The increased charge transfer and the electron density at (3,-1) intermolecular bond critical point corroborates well with the size of the π-system and the complexation energy. The observed deviation from the linear dependency of the Cu(+)-A complexes is attributed to the dπ→π* back bonding interaction. An energy decomposition analysis via the reduced variational space (RVS) procedure was also carried out to analyze which component among polarization, charge transfer, coulomb and exchange repulsion contributes to the increase in the complexation energy. The RVS results suggest that the polarization component significantly contributes to the increase in the complexation energy when the alkene size increases.  相似文献   

9.
Warmke H  Wiczk W  Ossowski T 《Talanta》2000,52(3):449-456
The influence of metal cations Li(+), Na(+), K(+), Cs(+), Mg(2+), Ca(2+), Sr(2+), Ba(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+), Pb(2+) and Al(3+) on the spectroscopic properties of the dansyl (1-dimethylaminonaphthalene-5-sulfonyl) group covalently linked to monoaza crown ethers 1-aza-15-crown-5 (1,4,7,10,-tetraoxa-13-azacyclopentadecane) (A15C5) and 1-aza-crown-6 (1,4,7,10,13-pentaoxa-16-azacyclooctadecane) (A18C6) was investigated by means of absorption and emission spectrophotometry. Interaction of the alkali metal ions with both fluoroionophores is weak, while alkaline earth metal ions interact strongly causing 50 and 85% quenching of dansyl fluorescence of N-(5-dimethylamine-1-naphthalenesulfonylo)-1,4,7,10,-tetraoxa-13-azacyclopentadecane (A15C5-Dns) and N-(5-dimethylamine-1-naphthalenesulfonylo)-1,4,7,10,13-pentaoxa-16-azacyclooctadecane (A18C6-Dns), respectively. The Cu(2+), Pb(2+) and Al(3+) cations interact very strongly with dansyl chromophore, causing a major change in absorption spectrum of the chromophore and forming non-fluorescent complexes. The Co(2+), Ni(2+), Zn(2+), Mg(2+) cations interact moderately with both fluoroionophores causing quenching of dansyl fluorescence by several percent only.  相似文献   

10.
Quantum chemical [MP2(FULL)/6-311++G-(d,p)] calculations are done on the binding of hydrated Li(+), Na(+), K(+), Mg(2+), Cu(+), and Zn(2+) metal ions with biologically relevant heteroaromatics such as imidazole and methylimidazole. The computed interaction energies are found to be in good agreement with the available experimental data. The effect of hydration on hydrogen bonding has been studied in detail and it shows that the hydrogen bond strength between H(2)O···H-N(1) substantially increases in the presence of metal ions. The present study quantifies the cooperativity between M···imidazole (M = Li(+), Na(+), K(+), Mg(2+), Cu(+), and Zn(2+)) and N(1)-H···OH(2) interactions. Topological atoms in molecules (AIM) analysis and charge analysis support the variation in hydrogen-bonding strength and the variation in M···imidazole binding strength. Effect of hydration on N(1)-H stretching frequency is studied, and it shows a clear shift in the stretching frequency after sequential hydration of metal ion as well as the N(1) of imidazole. The present study provides a detailed account on the biologically important M-histidine motif interaction with metal ions, where histidine is modeled by imidazole and methylimidazole.  相似文献   

11.
Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICRMS) was used to investigate metal ion interactions of the 18 amino acid peptide fragment B18 (LGLLLRHLRHHSNLLANI), derived from the membrane-associated protein bindin. The peptide sequence B18 represents the minimal membrane-binding motif of bindin and resembles a putative fusion peptide. The histidine-rich peptide has been shown to self-associate into distinct supramolecular structures, depending on the presence of Zn(2+) and Cu(2+). We examined the binding of B18 to the metal ions Cu(2+), Zn(2+), Mg(2+), Ca(2+), Mn(2+) and La(3+). For Cu(2+), we compared the metal binding affinities of the wild-type B18 peptide with those of its mutants in which one, two or three histidine residues have been replaced by serines. Upon titration of B18 with Cu(2+) ions, we found sequential binding of two Cu(2+) ions with dissociation constants of approximately 34 and approximately 725 micro M. Mutants of B18, in which one histidine residue is replaced by serine, still exhibit sequential binding of two copper ions with affinities for the first Cu(2+) ion comparable to that of wild-type B18 peptide, but with a greatly reduced affinity for the second Cu(2+) ion in mutants H112S and H113S. For mutants in which two histidines are replaced by serines, the affinity for the first Cu(2+) ion is reduced approximately 3-10 times in comparison with B18. The mutant in which all three histidine residues are replaced by serines exhibits an approximately 14-fold lower binding for the first Cu(2+) ion compared with B18. For the other metal ions under investigation (Zn(2+), Mg(2+), Ca(2+), Mn(2+) and La(3+)), a modest affinity to B18 was detected binding to the peptide in a 1 : 1 stoichiometry. Our results show a high affinity of the wild-type fusogenic peptide B18 for Cu(2+) ions whereas the Zn(2+) affinity was found to be comparable to that of other di- and trivalent metal ions.  相似文献   

12.
Du P  Lippard SJ 《Inorganic chemistry》2010,49(23):10753-10755
We describe ZRL1, a turn-on colorimetric and red fluorescent zinc ion sensor. The Zn(2+)-promoted ring opening of the rhodamine spirolactam ring in ZRL1 evokes a 220-fold fluorescence turn-on response. In aqueous media, ZRL1 turn-on luminescence is highly selective for Zn(2+) ions, with no significant response to other competitive cations, including Na(+), K(+), Ca(2+), Mg(2+), Mn(2+), Fe(2+), Co(2+), Ni(2+), Cu(2+), Cd(2+), or Hg(2+). In addition to these characteristics, preliminary results indicate that ZRL1 can be delivered to living cells and can be used to monitor changes in intracellular Zn(2+) levels.  相似文献   

13.
The first example of a new Hg(2+)-sensing system based on the structures of complexes is reported. The system uses a combination of a new chiral bidentate ligand and CD spectroscopy. Significant CD spectral changes are observed when Hg(2+) is added, whereas no CD spectral changes are observed in the cases of Li(+), Na(+), K(+), Mg(2+), Ca(2+), Mn(2+), Fe(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+), Rb(+), Ag(+), Cd(2+), La(3+), Gd(3+), and Pb(2+).  相似文献   

14.
Kaur P  Sareen D  Singh K 《Talanta》2011,83(5):1695-1700
Although the high sensitivity, high selectivity and fast response make emission (fluorescence) based technique as one of the most promising tool for developing the chemosensors for metal ions, the past few years have witnessed a demand for the absorption based chemosensors for paramagnetic heavy metal ions, especially Cu(2+). Being paramagnetic, Cu(2+) leads to the low signal outputs ("turn-off") caused by decreased emission which may sometimes give false positive response, rendering the emission based technique less reliable for analytical purposes. Herein, we report synthesis and characterization of a hetarylazo derivative, characterized by a strong charge-transfer band which gets attenuated convincingly in the presence of Cu(2+) leading to distinct naked-eye color change (yellow to purple), and to a lesser extent in the presence of Cd(2+), Zn(2+), Co(2+), Pb(2+), Fe(2+), Ni(2+), Fe(3+) and Hg(2+) for which the naked eye sensitivity was comparatively (w.r.t. Cu(2+)) much less. No response was observed for the other metal ions including Li(+), Na(+), K(+), Mg(2+), Ca(2+), Ba(2+), Mn(2+), Ag(+), Zn(2+), Cd(2+), Pb(2+), and lanthanides Ce(3+), La(3+), Pr(3+), Eu(3+), Nd(3+), Lu(3+), Yb(3+), Tb(3+), Sm(3+), Gd(3+). The proposed sensing mechanism has been ascribed to the stabilization of LUMO after complexation with Cu(2+) and a 1:1 stoichiometry has been deduced.  相似文献   

15.
Martin D  Rouffet M  Cohen SM 《Inorganic chemistry》2010,49(22):10226-10228
The synthesis, structure, and solution spectroscopy of several (2-sulfonamidophenyl)benzimidazole metal complexes are reported. These ligands, which have been reported as selective molecular sensors for Zn(2+), readily form complexes with Co(2+), Ni(2+), Cu(2+), and Zn(2+). Surprisingly, the ligand adopts different binding modes depending on the metal ion. The work here provides insight into the coordination chemistry of these ligands, which may allow for the development of improved metal-ion sensors and metalloprotein inhibitors.  相似文献   

16.
Tan J  Yan XP 《Talanta》2008,76(1):9-14
We report a simple twisted intramolecular charge transfer (TICT) chromogenic chemosensor for rapid and selective detection of Hg(2+) and Cu(2+). The sensor was composed of an electron-acceptor 4-fluoro moiety and an electron-donor 7-mercapto-2,1,3-benzoxadiazole species where the S together with the 1-N provided the soft binding unit. Upon Hg(2+) and Cu(2+) complexation, remarkable but different absorbance spectra shifts were obtained in CH(3)CN-H(2)O mixed buffer solution at pH 7.6, which can be easily used for naked-eye detection. The sensor formed a stable 2:1 complex with Cu(2+), and both 2:1 and 3:1 complexes with Hg(2+). While alkali-, alkaline earth- and other heavy and transition metal ions such as Na(+), Mg(2+), Mn(2+), Co(2+), Ni(2+), Ag(+), Zn(2+), Pb(2+) and Cd(2+) did not cause any significant spectral changes of the sensor. This finding is not only a supplement to the detecting methods for Hg(2+) and Cu(2+), but also adds new merits to the chemistry of 4,7-substituted 2,1,3-benzoxadiazoles.  相似文献   

17.
Zhao Q  Li RF  Xing SK  Liu XM  Hu TL  Bu XH 《Inorganic chemistry》2011,50(20):10041-10046
A polypyridyl ligand, 2,3,6,7,10,11-hexakis(2-pyridyl)dipyrazino[2,3-f:2',3'-h]quinoxaline (HPDQ), was found to have excellent fluorescent selectivity for Cd(2+) over many other metal ions (K(+), Na(+), Ca(2+), Mg(2+), Mn(2+), Fe(2+), Ni(2+), Co(2+), Cu(2+), Ag(+), Hg(2+), Zn(2+), and Cr(3+)) based on the intramolecular charge-transfer mechanism, which makes HPDQ a potential fluorescence sensor or probe for Cd(2+). An obvious color change between HPDQ and HPDQ + Cd(2+) can be visually observed by the naked eye. The structure of the complex HPDQ-Cd has been characterized by X-ray crystallography. Density functional theory calculation results on the HPDQ and HPDQ-Cd complexes could explain the experimental results.  相似文献   

18.
We describe novel fluorescent N-deoxyribosides (1 and 2) having 2-pyrido-2-benzimidazole and 2-quino-2-benzimidazole as aglycones. The compounds were prepared from the previously unknown heterocyclic precursors and Hoffer's chlorosugar, yielding alpha anomers as the chief products. X-ray crystal structures confirmed the geometry and showed that the pyridine and benzimidazole ring systems deviated from coplanarity in the solid state by 154 degrees and 140 degrees , respectively. In methanol compounds 1 and 2 had absorption maxima at 360 and 370 nm, respectively, and emission maxima at 494 and 539 nm. Experiments revealed varied fluorescence responses of the nucleosides to a panel of 17 monovalent, divalent, and trivalent metal ions in methanol. One or both of the nucleosides showed significant changes with 10 of the metal ions. The most pronounced spectral changes for ligand-nucleoside 1 included red shifts in fluorescence (Au(+), Au(3+)), strong quenching (Cu(2+), Ni(2+), Pt(2+)), and substantial enhancements in emission intensity coupled with red shifts (Ag(+), Cd(2+), Zn(2+)). The greatest spectral changes for ligand-nucleoside 2 included a red shift in fluorescence (Ag(+)), a blue shift (Cd(2+)), strong quenching (Pd(2+), Pt(2+)), and substantial enhancements in emission intensity coupled with a blue shift (Zn(2+)). The compounds could be readily incorporated into oligodeoxynucleotides, where an initial study revealed that they retained sensitivity to metal ions in aqueous solution and demonstrated possible cooperative sensing behavior with several ions. The two free nucleosides alone can act as differential sensors for multiple metal ions, and they are potentially useful monomers for contributing metal ion sensing capability to DNAs.  相似文献   

19.
Sheng R  Wang P  Gao Y  Wu Y  Liu W  Ma J  Li H  Wu S 《Organic letters》2008,10(21):5015-5018
A coumarin-based colorimetric chemosensor 1 was designed and synthesized. It exhibits good sensitivity and selectivity for the copper cation over other cations such as Zn(2+), Cd(2+), Pb(2+), Co(2+), Fe(2+), Ni(2+), Ag(+), and alkali and alkaline earth metal cations both in aqueous solution and on paper-made test kits. The change in color is very easily observed by the naked eye in the presence of Cu(2+) cation, whereas other metal cations do not induce such a change. The quantitative detection of Cu(2+) was preliminarily examined.  相似文献   

20.
A poly(amine ester) dendrimer with naphthyl units (G1N6) has been synthesized as a fluorescent chemosensor for metal ions. We investigated the metal-ion recognition of G1N6 by adding each of Ag(+), Al(3+), Ba(2+), Ca(2+), Cd(2+), Co(2+), Cu(2+), Fe(3+), Mg(2+), Ni(2+), and Zn(2+) in acetonitrile solution. Large changes were observed in the fluorescence spectra of G1N6 upon the addition of Al(3+), Cu(2+), and Zn(2+).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号