首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
建立了一种微波辅助微固相萃取法,用于提取河水中的5种有机磷农药,用多壁碳纳米管做微固相萃取的吸附剂,对河水中的有机磷农药进行吸附,解析液用气相色谱/质谱法(GC-MS)分析。实验考察了提取温度、时间、解析溶剂的种类、解析时间对目标化合物峰面积的影响。确定最优的实验条件为:微波提取温度为70℃、提取时间为5min、乙酸乙酯为解析溶剂、超声解析的时间为10min。对加标的河水样品进行了分析,所得河水样品中被测物的回收率为94.3%~99.3%,相对标准偏差(RSD)为2.1%~5.9%。  相似文献   

2.
建立微波萃取-气相色谱法同时分离测定水果、蔬菜中7种有机磷农药残留量的方法。采用微波加速反应系统提取农药残留,不需要净化过程,FPD为检测器,样品提取效果好,干扰物少,检测快速。方法的检出限为0.004-0.01μg/mL,回收率为86、4%-107.5%,相对标准偏差为2.6%-7.0%(n=6)。  相似文献   

3.
用微波消解气相色谱法测定鱼肉中的有机氯农药   总被引:19,自引:1,他引:18  
研究了微波消解 -有机溶剂提取 -气相色谱法测定鱼肉样品中有机氯农药的分析方法。对消解液、微波辅助加热条件及提取溶剂进行了优化实验 ,选择冰醋酸 -高氯酸 (体积比4∶1)在600W微波功率下接受辐射2min分解鱼肉样品 ,用30 % (φ)苯的石油醚溶液提取 ,对各种有机氯农药的回收率除 p,p′_DDT为60.3 %外 ,其余均在83.4 %~109.6 %之间 ,与水浴加热分解的国家标准方法相当。该法具有快速 ,灵敏度、精确度、准确度高等优点 ,适用于大批量食品和生物样品中有机氯农药的分析测定。  相似文献   

4.
建立微波萃取–气相色谱法测定土壤中5种有机磷农药的含量。样品以丙酮–二氯甲烷(1∶1)为萃取溶剂,采用硅胶小柱净化,浓缩后经火焰光度检测器检测。5种有机磷农药的质量浓度在0.010~0.500μg/mL范围内与色谱峰面积呈良好的线性关系,相关系数均大于0.998,方法检出限为2.33~3.66μg/kg。样品加标回收率为90%~103%,测定结果的相对标准偏差为1.54%~9.05%(n=6)。该方法操作方便、快速,结果准确、可靠,试剂用量少,缩短了分析时间,适用于土壤中有机磷农药的测定。  相似文献   

5.
近年来,无溶剂微波提取法被广泛的应用到植物活性组分的提取~([1]).通过在样品中加入一些微波吸收介质,可以改进无溶剂微波提取法~([2]).由于离子液体具有良好的热稳定性,被广泛用于绿色溶剂提取分析方面~([3,4]).本研究以离子液体为微波吸收介质,加入到样品中,提取肉桂中的挥发性组分,并用GC-MS分析了挥发性组分.  相似文献   

6.
以离子液体作为微波吸收介质建立了离子液体-非极性溶剂微波提取法,对人参中的化学成分进行了提取,并将该法与固体微波吸收介质-非极性溶剂微波提取法、极性溶剂微波提取法以及混合溶剂微波提取法进行了对比.结果表明,极性溶剂提取的主要化学成分为极性化合物,而固体微波吸收介质-非极性溶剂微波提取法与离子液体-非极性溶剂微波提取法相比,提取所得的化学成分并无明显差别,说明离子液体是一种较好的微波吸收介质和能量传递材料.所建立的方法具有提取时间短、操作简单及绿色环保等优点,且对后期分析无明显影响,是快速提取化学成分的理想方法.  相似文献   

7.
固体微波介质加热快速提取新鲜橘皮中挥发油组分   总被引:2,自引:1,他引:1  
对传统微波加热模式进行了改进,以具有良好微波吸收性能的微波吸收固体介质取代传统溶剂和水,将其加入到新鲜样品的提取体系,达到快速升温的目的.将改进的微波辅助无溶剂法应用于提取新鲜植物样品中挥发油组分,并考察了3种微波吸收介质(羰基铁粉、石墨粉和活性炭粉)对提取结果的影响.结果证明:对于新鲜样品,除活性炭粉无法使用外,羰基铁粉和石墨粉均适用.在20 g微波吸收介质及85 W微波功率的加热作用下,仅需30 min即可将100 g样品中的挥发油提取完全.通过与传统微波辅助无溶剂法、微波辅助水蒸馏法和传统水蒸馏法比较,改进的微波辅助无溶剂法具有提取时间短(30 min)、耗电量小(0.43 kW · h/kg)等优点,且所得挥发油组分无明显差别.此外,还考察了烘干过程对橘皮挥发油组成的影响,发现橘皮挥发油的组成受烘干影响较大.  相似文献   

8.
QuEChERS/气相色谱法测定水果中31种有机磷农药残留   总被引:2,自引:0,他引:2  
建立了QuEChERS/气相色谱测定水果中31种有机磷农药残留的快速分析方法,并对Qu ECh ERS前处理方法进行优化。样品以乙腈提取、氯化钠盐析后,经C18填料和无水硫酸镁分散固相萃取净化,气相色谱FPD检测器检测,基质匹配标准曲线校正,外标法定量。结果表明,该方法的线性相关系数为0.990 3~0.999 9;不同加标水平下31种有机磷农药的回收率为81.7%~120.7%,相对标准偏差为0.4%~14.7%,方法的检出限为0.4~6μg·kg~(-1)。方法简便快速、准确灵敏,且节省样品和有机溶剂,可满足水果中此31种有机磷农药残留同时快速检测的实际需要。  相似文献   

9.
建立了中草药中有机磷和氨基甲酸酯类农药同时检测的气相色谱分析新方法.中药材试样依据正交实验的优化条件,用正己烷-丙酮(1∶4,V∶V)混合提取剂进行微波辅助提取,经弗罗里硅土和中性氧化铝混合层析柱净化后,采用HP-5毛细管柱分离,氮磷检测器同时检测中草药中15种有机磷和6种氨基甲酸酯类农药残留量.21种农药在0.01~1.0 mg/L的浓度范围内线性良好,线性相关系数为0.9950~1.000,检出限为0.002~0.01 mg/L.在0.05、0.2、0.5 mg/kg三个添加水平的平均回收率分别为75.11%~128.57%、75.85%~120.71%和76.43%~117.25%,相对标准偏差分别为 3.10%~10.58%、5.27%~9.94%和4.03%~9.03%.方法用于中草药中有机磷和氨基甲酸酯类农药残留的同时检测,结果良好.  相似文献   

10.
微波辅助提取-GC/MS联用分析苍耳子中油脂成分的研究   总被引:2,自引:0,他引:2  
采用微波辅助提取-GC/MS联用分析苍耳子中的油脂成分.以V(环已烷):V(丙酮)=1:1为提取溶剂,优化了微波辅助提取的条件.以正二十烷为内标,鉴定出了13种油脂成分,各组分相对保留时间的相对标准偏差(RSD)小于0.15%,相对峰面积的RSD<3.0%.对不同批次以及不同产地的苍耳子样品进行了对比研究.该方法可用于苍耳子的鉴定和质量控制.  相似文献   

11.
Xiao Q  Hu B  Yu C  Xia L  Jiang Z 《Talanta》2006,69(4):848-855
A single-drop microextraction (SDME) procedure was developed for the analysis of organophosphorus pesticides (OPPs) in water and fruit juice by gas chromatography (GC) with flame photometric detection (GC-FPD). The significant parameters affecting the SDME performance such as selection of microextraction solvent, solvent volume, extraction time, stirring rate, sample pH and temperature, and ionic strength were studied and optimized. Two types of SDME mode, static and cycle-flow SDME, were evaluated. The static SDME procedure provided more sensitive analysis of the target analytes. Therefore, static SDME with tributyl phosphate (TBP) as internal standard was selected for the real sample analysis. The limits of detection (LODs) in water for the six studied compounds were between 0.21 and 0.56 ng/mL with the relative standard deviations ranging from 1.7 to 10.0%. Linear response data was obtained in the concentration range of 0.5-50 ng/mL (except for dichlorvos 1.0-50 ng/mL) with correlation coefficients from 0.9995 to 0.9999. Environmental water sample collected from East Lake and fruit juice samples were successfully analyzed using the proposed method, but none of the analytes in both lake water and fruit juice were detected. The recoveries for the spiked water and juice samples were from 77.7 to 113.6%. Compared with the conventional methods, the proposed method enabled a rapid and simple determination of organophosphorus pesticides in water and fruit juice with minimal solvent consumption and a higher concentration capability.  相似文献   

12.
A rapid, sensitive and efficient liquid phase microextraction (LPME) method was developed to determine trace concentrations of some organophosphorus pesticides in water samples. This method combines liquid phase microextraction with gas chromatographic (GC) analysis in a simple and inexpensive apparatus involving very little organic solvent consumption. It involves exposing a floated drop of an organic solvent on the surface of aqueous solution in a sealed vial. Experimental parameters which control the performance of LPME such as type of organic solvent, organic solvent and sample volumes, sample stirring rate, sample solution temperature, salt addition and exposure time were investigated and optimized. Finally, the enrichment factor, dynamic linear range (DLR), limit of detection (LOD) and precision of the method were evaluated by the water samples spiked with organophosphorus pesticides. Using optimum extraction conditions, very low detection limits (0.01-0.04 μg L−1) and good linearities (0.9983 < r2 < 0.9999) were achieved. The LPME was performed for determination of organophosphorus pesticides in different types of natural water samples and acceptable recoveries (96-104%) and precisions (3.5 < R.S.D.% < 8.9) were obtained. The results suggested that the newly proposed LPME method is a rapid, accurate and effective sample preparation method and could be successfully applied for extraction and determination of organophosphorus pesticides in water samples.  相似文献   

13.
The aim of this work was to develop temperature‐controlled ultrasound‐ and vortex‐assisted liquid–liquid microextraction as a fast and efficient approach for the extraction of nine organophosphorus pesticides in beverage samples followed by GC with flame photometric detection analysis. The combination of ultrasonication and vortexing were used to assist the microextraction, and the use of a dispersion solvent was avoided. Several variables that could potentially affect the extraction efficiency, namely, the type and volume of extraction solvent, sequence, and time of ultrasonication and vortexing, ultrasonication bath temperature and ionic strength were optimized. Under optimum conditions, the calibration graphs were linear over the range of 0.5–200 μg/L. The LOD (S/N = 3) was between 0.01 and 0.05. The optimized method exhibited a good precision level with RSD values between 4.5 and 9.8%. The enrichment factors for the nine organophosphorus pesticides were between 224 and 339. Four beverage samples were successfully analyzed using the proposed method.  相似文献   

14.
This paper described a new approach for the determination of organophosphorus pesticides by temperature-controlled ionic liquid dispersive liquid-phase microextraction prior to high-performance liquid chromatography with ultraviolet detection. Methylparathion and phoxim, two of the typical organophosphorus pesticides, were used as the model analytes for the investigation of the development and application of the new microextraction method. 1-Hexyl-3-methylimidazolium hexafluorophosphate [C6MIM][PF6] was used as the extraction solvent and the factors affecting the extraction efficiency such as the volume of [C6MIM][PF6], pH of working solutions, extraction time, centrifuging time, dissoluble temperature and salt effect were optimized. Under the optimal extraction conditions, methylparathion and phoxim exhibited good linear relationship in the concentration range of 1-100 ng mL(-1). The detection limits were 0.17 ng mL(-1) and 0.29 ng mL(-1), respectively. Precisions of proposed method (RSDs, n=6) were 2.5% and 2.7%, respectively. This proposed method was successfully applied in the analysis of four real environmental water samples and good spiked recoveries over the range of 88.2-103.6% were obtained. These results indicated that temperature-controlled ionic liquid dispersive liquid-phase microextraction had excellent application prospect in environmental field.  相似文献   

15.
Solid‐phase extraction coupled with dispersive liquid–liquid microextraction was developed as an ultra‐preconcentration method for the determination of four organophosphorus pesticides (isocarbophos, parathion‐methyl, triazophos and fenitrothion) in water samples. The analytes considered in this study were rapidly extracted and concentrated from large volumes of aqueous solutions (100 mL) by solid‐phase extraction coupled with dispersive liquid–liquid microextraction and then analyzed using high performance liquid chromatography. Experimental variables including type and volume of elution solvent, volume and flow rate of sample solution, salt concentration, type and volume of extraction solvent and sample solution pH were investigated for the solid‐phase extraction coupled with dispersive liquid–liquid microextraction with these analytes, and the best results were obtained using methanol as eluent and ethylene chloride as extraction solvent. Under the optimal conditions, an exhaustive extraction for four analytes (recoveries >86.9%) and high enrichment factors were attained. The limits of detection were between 0.021 and 0.15 μg/L. The relative standard deviations for 0.5 μg/L of the pesticides in water were in the range of 1.9–6.8% (n = 5). The proposed strategy offered the advantages of simple operation, high enrichment factor and sensitivity and was successfully applied to the determination of four organophosphorus pesticides in water samples.  相似文献   

16.
In this article, a new method for the determination of organophosphorus pesticides (OPPs) in cucumber and watermelon was developed by using dispersive liquid-liquid microextraction (DLLME) and gas chromatography-flame photometric detection (GC-FPD). Acetonitrile (MeCN) was used as extraction solvent for the extraction of OPPs from plant samples. When the extraction process was finished, the target analytes in the extraction solvent were rapidly transferred from the MeCN extract to another small volume of organic solvent, chlorobenzene, using DLLME. Recovery tests were performed for concentrations between 0.5 and 20 microg/kg; recoveries for each target analyte were in the range between 67 and 111%. The repeatability of the proposed method, expressed as relative standard deviation, varied between 2 and 9% (n=3). Limits of detection of the method for watermelon and cucumber were found ranging from 0.010 to 0.190 microg/kg for all the target pesticides. Compared with the conventional sample preparation method, the proposed method has the advantage of being quick and easy to operate, and having high-enrichment factors and low consumption of organic solvent.  相似文献   

17.
For the first time, the low‐density solvent‐based vortex‐assisted surfactant‐enhanced emulsification liquid–liquid microextraction, followed by GC‐flame photometric detection has been developed for the determination of eight organophosphorus pesticides in aqueous samples. A small volume of organic extraction solvent (toluene) was dispersed into the aqueous samples by the assistance of surfactant and vortex agitator. The extraction was performed in a special disposable polyethylene pipette, allowing using the reagents with lower density than water as extraction solvents. The influence parameters were systemically investigated and optimized: toluene (30 μL) and Triton X‐100 (0.2 mmol/L) were used as the extraction solvent and the surfactant, respectively, and the extraction was performed for 1 min under room temperature without adding sodium chloride. Under the optimum conditions, the validation parameters such as the RSD (n = 6; 2.1–11.3%), LOD (0.005 and 0.05 μg/L), and linear range (0.1–50.0 μg/L with correlation coefficients (0.9958–0.9992) showed the method was satisfying. The proposed method has been successfully applied to the determination of the organophosphorus pesticides in real samples with recoveries between 82.8 and 100.2%.  相似文献   

18.
A single-step extraction-cleanup method, including microwave-assisted extraction (MAE) and micro-solid-phase extraction (μ-SPE), was developed for the extraction of ten organophosphorus pesticides in vegetable and fruit samples. Without adding any polar solvent, only one kind of non-polar solvent (hexane) was used as extraction solvent in the whole extraction step. Absorbing microwave μ-SPE device, was prepared by packing activated carbon with microporous polypropylene membrane envelope, and used as not only the sorbent in μ-SPE, but also the microwave absorption medium. Some experimental parameters effecting on extraction efficiency was investigated and optimized. 1.0 g of sample, 8 mL of hexane and three absorbing microwave μ-SPE devices were added in the microwave extraction vessel, the extraction was carried out under 400 W irradiation power at 60 °C for 10 min. The extracts obtained by MAE-μ-SPE were directly analyzed by GC–MS without any clean-up process. The recoveries were in the range of 93.5–104.6%, and the relative standard deviations were lower than 8.7%.  相似文献   

19.
Vortex‐assisted liquid–liquid microextraction followed by high‐performance liquid chromatography with UV detection was applied to determine Isocarbophos, Parathion‐methyl, Triazophos, Phoxim and Chlorpyrifos‐methyl in water samples. 1‐Bromobutane was used as the extraction solvent, which has a higher density than water and low toxicity. Centrifugation and disperser solvent were not required in this microextraction procedure. The optimum extraction conditions for 15 mL water sample were: pH of the sample solution, 5; volume of the extraction solvent, 80 μL; vortex time, 2 min; salt addition, 0.5 g. Under the optimum conditions, enrichment factors ranging from 196 to 237 and limits of detection below 0.38 μg/L were obtained for the determination of target pesticides in water. Good linearities (r > 0.9992) were obtained within the range of 1–500 μg/L for all the compounds. The relative standard deviations were in the range of 1.62–2.86% and the recoveries of spiked samples ranged from 89.80 to 104.20%. The whole proposed methodology is simple, rapid, sensitive and environmentally friendly for determining traces of organophosphorus pesticides in the water samples.  相似文献   

20.
In this study, a microextraction method termed as ultrasound‐assisted emulsification–microextraction (USAEME) has been developed for the extraction of organophosphorus pesticides (OPPs) in water and orange juice samples. In the USAEME method, aliquots of 50 μL chlorobenzene used as extraction solvent was added to 10 mL water sample in a conical glass centrifugal tube. Factors influencing the USAEME extraction efficiency such as sonication time, extraction solvent, extraction volume and salt addition were evaluated. Under the optimum conditions, enrichment factors ranged from 241 to 311, LOD varied from 5.3 to 10.0 ng/L and linearity with a coefficient of estimation (r2) varied from 0.9991 to 0.9998 in the concentration level range of 0.05–2.5 μg/L for the extraction of OPPs in water samples. Finally, the proposed USAEME method was used for the extraction of OPPs from water and orange juice. The recoveries were in the range of 80.0–110.0%, and the repeatability of the method expressed as RSD (n=3) varied between 1.6 and 13%. The USAEME method has the advantage of being easy to operate, low consumption of organic solvent and high extraction efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号