首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
利用和频振动光谱及表面张力测定技术对两亲性聚氧乙烯-聚氧丙烯(PEO-PPO)表面活性剂的表面活性及溶液界面结构进行了研究。结果表明:疏水PPO链段在溶液界面吸附并紧密排列是溶液表面张力降低的主要原因。增加溶液浓度、增大共聚物链内PPO与PEO聚合度比值可增加高分子链在界面的吸附,并使PPO在界面紧密排列,侧基(甲基)有序取向。另外,PPO在分子链中的位置也对这一行为产生影响,PPO位于分子链两端时的结构更有利于PPO在表面紧密堆积,降低界面高分子链间相互作用,减小溶液表面张力。  相似文献   

2.
卢晓林  周杰  李柏霖 《物理化学学报》2014,30(12):2342-2348
以和频(SFG)振动光谱技术探测了正十二硫醇(DDT)在不同受限状态下的分子振动信号,包括金属基底上的自组装单层(SAM)分子,放置在二氧化硅基底上的表面DDT化的金纳米粒子以及金纳米粒子的甲苯溶液.在三种状态下都探测到了来自于DDT分子的振动光谱,振动光谱的区别提供了在不同受限态下DDT分子的结构信息.在金属基底上DDT分子排列规整,放置在二氧化硅基底上的金纳米粒子表面的DDT分子具有一定的柔性,在空气-甲苯溶液界面金纳米粒子表面的DDT分子高度无序.此外,光谱实验显示,金纳米粒子表面的分子振动信号产生了局域场增强的效应,相对于金基底上的自组装单层分子而言,增强系数为102-103,取决于光谱的偏振组合.  相似文献   

3.
黄芝  唐鑫  邓罡华  周恩财  王鸿飞  郭源 《电化学》2011,17(2):134-138
用和频振动光谱研究乙腈/金电极界面,观测到乙腈的甲基振动峰强度随施加的电极电势而变化.当电极电势越过零电荷电势(pzc)时,甲基振动峰符号发生反转,这意味着基团取向发生反转(flip-flop).由此推断出乙腈分子在金电极界面的吸附构型.即在零电荷电势下,电极界面吸附的乙腈分子构型为甲基靠近电极表面而腈基远离电极表面;而高于零电荷电势则电极界面吸附的乙腈分子构型发生反转,变为腈基靠近电极表面而甲基远离电极表面的构型.  相似文献   

4.
卢晓林  周杰  李柏霖 《物理化学学报》2015,30(12):2342-2348
以和频(SFG)振动光谱技术探测了正十二硫醇(DDT)在不同受限状态下的分子振动信号, 包括金属基底上的自组装单层(SAM)分子, 放置在二氧化硅基底上的表面DDT化的金纳米粒子以及金纳米粒子的甲苯溶液. 在三种状态下都探测到了来自于DDT分子的振动光谱, 振动光谱的区别提供了在不同受限态下DDT分子的结构信息. 在金属基底上DDT分子排列规整, 放置在二氧化硅基底上的金纳米粒子表面的DDT分子具有一定的柔性, 在空气-甲苯溶液界面金纳米粒子表面的DDT分子高度无序. 此外, 光谱实验显示, 金纳米粒子表面的分子振动信号产生了局域场增强的效应, 相对于金基底上的自组装单层分子而言, 增强系数为102-103, 取决于光谱的偏振组合.  相似文献   

5.
采用红外-可见和频振动光谱研究了表面包覆油酸分子的Fe3O4纳米颗粒, 得到了2种实验构型(构型1: 可见光入射角63°, 红外光入射角55°; 构型2: 可见光入射角45°, 红外光入射角55°)和3种偏振组合(ssp, ppp, sps)下的和频振动光谱, 比较了2种实验构型下和频光谱的特征, 通过偏振分析方法对各个光谱峰进行了归属.  相似文献   

6.
由溴化十六烷基三甲铵(CTAB)和甲基橙(MO)的混合溶液制成了含染料分子甲基橙的黑皂膜(BSF)。用电子吸收和FT-IR光谱考察了成膜的动态过程。水核厚度随溶液中甲基橙浓度增加而交薄,由普通型BSF最终交为Newton型BSF。脂链CH_2伸缩振动及甲基橙π—π~*吸收特征表明,两类BSF中CTAB的聚集态均为取向的液晶态,而MO在两类膜中亦具有相同的聚集形态和取向特征。以单轴取向模型建立了分子取向角与偏振Raman强度间的关系。由偏振Raman实验结果计算出MO在两类BSF中以相同的倾角(约80°)嵌在单分子膜壁上。  相似文献   

7.
我们考察了四(十六烷硫基)四硫富瓦烯/硬脂酸(THT-TTF:SA=1:n)在气一液界面的聚集状态及在LB膜中的排列.当n=1时,THT-TTF分子在气-液界面形成了双分子膜;当n>6时,THT-TTF分子形成了单分子膜;1相似文献   

8.
我们考察了四(十六烷硫基)四硫富瓦烯/硬脂酸(THT-TTF:SA=1:n)在气-液界面的聚集状态及在LB膜中的排列,当n=1时,THT-TTF分子在气-液界面形成了双分子膜;当n>6时,THT-TTF分子形成了单分子膜;1相似文献   

9.
采用离子自组装的方法,制备了侧链含有肉桂酸光敏基元和二苯乙烯荧光基元的新型超分子复合物PCAMSTIL.通过核磁共振(NMR)和红外光谱(FT-IR)表征了该超分子复合物的结构,并用热重分析(TGA)、紫外可见光谱(UV-Vis)和荧光光谱(FL)研究了其热稳定性和光学性能.将PCAMSTIL旋涂成膜,薄膜经过266 nm偏振脉冲激光辐照后,肉桂酸发生轴向选择的[2+2]加成,薄膜垂直于激光偏振方向的紫外可见吸收明显大于平行方向的吸收,证实薄膜具有取向性.取向薄膜的最大吸收二向色性取向值最大可达0.103,优于一般肉桂酸材料的取向性,肉桂酸分子的取向也引起二苯乙烯荧光分子的协同取向,荧光偏振发射比可达1.73.  相似文献   

10.
邓琳  逯丹凤  祁志美 《物理化学学报》2009,25(12):2481-2487
光波导分光光谱技术利用光波导表面的消逝场敏感地测定有色物质亚单分子吸附层的偏振吸收光谱, 非常适合于研究染料、颜料、荧光分子、量子点、金属纳米粒子、带色基的蛋白质等在固/液界面的吸附行为. 本文使用宽频带卤钨灯、棱镜耦合的薄膜玻璃光波导和基于电荷耦合器件(CCD)的光谱分析仪设计制作了具有时间分辨本领的光波导分光光谱装置, 并利用该装置实时监测了罗丹明6G(R6G)和亚甲基蓝(MB)在玻璃表面的吸附特性. 通过比较在横电(TE)和横磁(TM)偏振模式下的吸收光谱, 发现R6G主要以二聚体和单体的形式吸附在玻璃表面, 而MB主要以多聚体的形式吸附在玻璃表面, 并分别估算了它们的平均取向角.  相似文献   

11.
Polarization-dependent infrared spectra of an antiferroelectric liquid crystal in the phase were measured at 60°C, for investigation of the relative orientation of the terminal alkyl chain and mesogen. The polarization angle-dependent infrared spectra obtained were analysed by two-dimensional (2D) correlation spectroscopy. The orientation of the mesogen segment and the alkyl chains in the phase is similar to that in the SmC* phase. Four new CH3 and CH2 stretching modes were observed from the 2D correlation spectra. From these we can clearly separate the vibrational mode for two hydrocarbon chains and conclude that the orientations of the two chains are different. The C=O group adjacent to the chiral segment is also separated by 2D correlation spectra into two bands, which may arise from either the C=O group hydrogen-bonded with the phenyl ring, or from another rotational conformation of the molecule.  相似文献   

12.
The purpose of this investigation is to study the ionic liquid/quartz interface with sum frequency generation vibrational spectroscopy (SFG). SFG spectroscopy was chosen for this study because of its unique ability to yield vibrational spectra of molecules at an interface. Different polarization combinations are used, which probe different susceptibilities, giving SFG the ability to determine molecular orientation at the interface. The ionic liquids used were 1-butyl-3-methylimidazolium tetrafluoroborate, [BMIM][BF(4)], and 1-butyl-3-methylimidazolium hexafluorophosphate, [BMIM][PF(6)]. To determine the influence of the molecular structure and charge on orientation at the interface, neutral, 1-methylimidazole, and 1-butylimidazole were also studied. Raman spectra and depolarization ratios were obtained for neat samples of 1-methylimidazole, 1-butylimidazole, and 1-butyl-3-methylimidazolium tetrafluoroborate recorded from 2700 to 3300 cm(-1). SFG spectra of the 1-methylimidazole/quartz interface showed both methyl and aromatic C-H vibrations. Orientation calculations determined that the ring of the molecule is tilted 45-68 degrees from normal, with the methyl group oriented 32-35 degrees from normal. The SFG spectra of 1-butylimidazole contain several resonances from the alkyl chain with only one weak resonance from the aromatic ring. Orientation calculations suggest that the ring is lying in the plane of the surface with the methyl group pointing 43-47 degrees from normal. The orientation of the [BMIM][PF(6)] ionic liquid was sensitive to trace amounts of water and had to be evacuated to <3 x 10(-5) Torr for the water to be removed. SFG spectra of both ionic liquids were similar, displaying resonances from the alkyl chain as well as the aromatic ring. Orientation analysis suggests the aromatic ring was tilted 45-90 degrees from normal for [BMIM][BF(4)], while the ring for [BMIM][PF(6)] was tilted 38-58 degrees from normal. This suggests the orientation of the molecule is influenced by the size of the anion.  相似文献   

13.
The air/liquid interface of 1-alkyl-3-methylimidazolium tetrafluoroborates with the general formula [C(n)mim]BF(4) (n = 4-11) was studied using infrared-visible sum frequency generation (SFG) vibrational spectroscopy. The probability of the gauche defect per CH2-CH2 bond in the alkyl chain decreases as the number of carbon atoms in the alkyl chain increases. This observation suggests that the interaction between the alkyl chains is enhanced as the alkyl chain length becomes longer. The frequencies of the C-H stretching vibrational modes observed in the SFG spectra are higher than those of the corresponding peak positions observed in the infrared spectra of the bulk liquids. This shift is consistent with a structure in which the alkyl chain protrudes from the bulk liquid into the air. A local structure, which originates from the intermolecular interaction between the ionic liquid molecules, is proposed to explain these observations.  相似文献   

14.
The structure of thin films of 1- and 2-butylimidazoles adsorbed on copper and steel surfaces under air was examined using sum frequency generation (SFG) vibrational spectroscopy in the ppp and ssp polarizations. Additionally, the SFG spectra of both isomers were recorded at 55 °C at the liquid imidazole/air interface for reference. Complementary bulk infrared, reflection-absorption infrared spectroscopy (RAIRS), and Raman spectra of both imidazoles were recorded for assignment purposes. The SFG spectra in the C-H stretching region at the liquid/air interface are dominated by resonances from the methyl end group of the butyl side chain of the imidazoles, indicating that they are aligned parallel or closely parallel to the surface normal. These are also the most prominent features in the SFG spectra on copper and steel. In addition, both the ppp and ssp spectra on copper show resonances from the C-H stretching modes of the imidazole ring for both isomers. The ring C-H resonances are completely absent from the spectra on steel and at the liquid/air interface. The relative intensities of the SFG spectra can be interpreted as showing that, on copper, under air, both butylimidazoles are adsorbed with their butyl side chains perpendicular to the interface and with the ring significantly inclined away from the surface plane and toward the surface normal. The SFG spectra of both imidazoles on steel indicate an orientation where the imidazole rings are parallel or nearly parallel to the surface. The weak C-H resonances from the ring at the liquid/air interface suggest that the tilt angle of the ring from the surface normal at this interface is significantly greater than it is on copper.  相似文献   

15.
Broadband vibrational sum frequency spectroscopy (VSFS) has been used to examine the surface structure of alkane liquid/vapor interfaces. The alkanes range in length from n-nonane (C(9)H(20)) to n-heptadecane (C(17)H(36)), and all liquids except heptadecane are studied at temperatures well above their bulk (and surface) freezing temperatures. Intensities of vibrational bands in the CH stretching region acquired under different polarization conditions show systematic, chain length dependent changes. Data provide clear evidence of methyl group segregation at the liquid/vapor interface, but two different models of alkane chain structure can predict chain length dependent changes in band intensities. Each model leads to a different interpretation of the extent to which different chain segments contribute to the anisotropic interfacial region. One model postulates that changes in vibrational band intensities arise solely from a reduced surface coverage of methyl groups as alkane chain length increases. The additional methylene groups at the surface must be randomly distributed and make no net contribution to the observed VSF spectra. The second model considers a simple statistical distribution of methyl and methylene groups populating a three dimensional, interfacial lattice. This statistical picture implies that the VSF signal arises from a region extending several functional groups into the bulk liquid, and that the growing fraction of methylene groups in longer chain alkanes bears responsibility for the observed spectral changes. The data and resulting interpretations provide clear benchmarks for emerging theories of molecular structure and organization at liquid surfaces, especially for liquids lacking strong polar ordering.  相似文献   

16.
Sum-frequency generation vibrational spectroscopy was used to investigate the surface molecular structure of binary mixtures of water and alcohol (methanol, ethanol, and propanol) at the air/liquid interface. In this study, it is shown that the sum-frequency signal from the alcohol molecules in the CH-stretch vibration region is always larger for mixtures than that from pure alcohol. For example, the sum-frequency signal from a propanol mixture surface at a 0.1 bulk mole fraction was approximately 3 times larger than that from a pure propanol surface. However, the ratio between the sum-frequency signals taken at different polarization combinations was found to be constant within experimental errors as the bulk alcohol concentration was changed. This suggested that the orientation of surface alcohol molecules does not vary appreciably with the change of concentration and that the origin of the signal enhancement is mainly due to the increase in the surface number density of alcohol molecules contributing to the sum-frequency signal for the alcohol/water mixture as compared to the pure alcohol surface.  相似文献   

17.
Molecular structures of poly(n-butyl methacrylate) (PBMA) at the PBMA/air and PBMA/water interfaces have been studied by sum frequency generation (SFG) vibrational spectroscopy. PBMA surfaces in both air and water are dominated by the methyl groups of the ester side chains. The average orientation and orientation distribution of these methyl groups at the PBMA/air and PBMA/water interfaces are different, indicating that surface restructuring occurs when the PBMA sample contacts water. Analysis shows that the orientation distribution of side chain methyl groups on the PBMA surface is narrower in water than that in air, indicating that the PBMA surface can be more ordered in water. To our knowledge, this is the first time that quantitative comparisons between molecular surface structures of polymers in air and in water have been made. Two assumptions on the orientation distribution function, including a Gaussian distribution and a formula based on the maximum entropy approach, are used in the analysis. It has been found that the orientation angle distribution function deduced by the Gaussian distribution and the maximum entropy distribution are quite similar, showing that the Gaussian distribution is a good approximation for the angle distribution. The effect of experimental error on the deduced orientational distribution is also discussed.  相似文献   

18.
Here we report a quantitative study of the orientational structure and motion of water molecule at the air/water interface. Analysis of Sum Frequency Generation (SFG) vibrational peak of the free O-H stretching band at 3700 cm-1 in four experimental configurations showed that orientational motion of water molecule at air/water interface is libratory within a limited angular range. The free OH bond of the interfacial water molecule is tilted around 33° from the interface normal and the orientational distribution or motion width is less than 15°. This picture is significantly different from the previous conclusion that the interfacial water molecule orientation varies over a broad range within the ultrafast vibrational relaxation time, the only direct experimental study concluded for ultrafast and broad orientational motion of a liquid interface by Wei et al.(Phys. Rev. Lett. 86, 4799, (2001)) using single SFG experimental configuration.  相似文献   

19.
Regioselectivity of glycoside containing cis‐diol esterification with fatty acid using dibutyltin dimethoxide as stannylating agent was probed, the results showed the equatorial position of cis‐diol has some advantage of being acylated, although the orientation of adjacent groups could affected the regioselectivity. The glycoside fatty acid esters were regioselectively synthesized on optimized condition with this stannyl method, the biological tests against bacterial as Staphylococcus aureus and Salmonella agona were carried out with these fatty acid esters, the testing results showed that glycoside esters with 12 or 14 carbon long chain fatty acid have some obvious inhibition against Staphylococcus aureus.  相似文献   

20.
The average molecular orientation in the adsorbed water layers formed on amorphous SiO(2) in ambient conditions was determined as a function of relative humidity using polarization attenuated total reflectance infrared spectroscopy (ATR-IR). The silicon oxide surface was prepared by chemically cleaning in aqueous solution, washing with water, and drying with argon. After drying, this produced a SiO(2) surface with hydroxyl groups, giving rise to a water contact angle < 5 degrees. Primarily two types of vibrational peaks that correspond to liquid water and solid-like water were observed in the adsorbed water layers formed on this surface at room temperature. The average orientation of the water molecules was determined from the dichroic ratio of s- to p-polarization absorbances. At low relative humidities, the highly hydrogen bonded solid-like structure exhibits a dichroic ratio as low as approximately 0.4, while the liquid water structure exhibits a dichroic ratio close to approximately 1.0. As the relative humidity increases, the dichroic ratio of both water structures approaches a dichroic ratio of 0.7 approximately 0.8, which is consistent with the random orientation of molecules of bulk water and ice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号