首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have used NMR and CD spectroscopy to study the conformations of modified oligonucleotides (locked nucleic acid, LNA) containing a conformationally restricted nucleotide (T(L)) with a 2'-O,4'-C-methylene bridge. We have investigated two LNA:RNA duplexes, d(CTGAT(L)ATGC):r(GCAUAUCAG) and d(CT(L)GAT(L)AT(L)GC):r(GCAUAUCAG), along with the unmodified DNA:RNA reference duplex. Increases in the melting temperatures of +9.6 degrees C and +8.1 degrees C per modification relative to the unmodified duplex were observed for these two LNA:RNA sequences. The three duplexes all adopt right-handed helix conformations and form normal Watson-Crick base pairs with all the bases in the anti conformation. Sugar conformations were determined from measurements of scalar coupling constants in the sugar rings and distance information derived from 1H-1H NOE measurements; all the sugars in the RNA strands of the three duplexes adopt an N-type conformation (A-type structure), whereas the sugars in the DNA strands change from an equilibrium between S- and N-type conformations in the unmodified duplex towards more of the N-type conformation when modified nucleotides are introduced. The presence of three modified T(L) nucleotides induces drastic conformational shifts of the remaining unmodified nucleotides of the DNA strand, changing all the sugar conformations except those of the terminal sugars to the N type. The CD spectra of the three duplexes confirm the structural changes described above. On the basis of the results reported herein, we suggest that the observed conformational changes can be used to tune LNA:RNA duplexes into substrates for RNase H: Partly modified LNA:RNA duplexes may adopt a duplex structure between the standard A and B types, thereby making the RNA strand amenable to RNase H-mediated degradation.  相似文献   

2.
A huge variety of chemically modified oligonucleotide derivatives has been synthesized for possible antisense applications. One such derivative, hexitol nucleic acid (HNA), is a DNA analogue containing the standard nucleoside bases, but with a phosphorylated 1',5'-anhydrohexitol backbone. Hexitol nucleic acids are some of the strongest hybridizing antisense compounds presently known, but HNA duplexes are even more stable. We present here the first high-resolution structure of a double helical nucleic acid with all sugars being hexitols. Although designed to have a restricted conformational flexibility, the hexitol oligomer h(GTGTACAC) is able to crystallize in two different double helical conformations. Both structures display a high x-displacement, normal Watson-Crick base pairing, similar base stacking patterns, and a very deep major groove together with a minor groove with increased hydrophobicity. One of the conformations displays a major groove which is wide enough to accommodate a second HNA double helix resulting in the formation of a double helix of HNA double helices. Both structures show most similarities with the A-type helical structure, the anhydrohexitol chair conformation thereby acting as a good mimic for the furanose C3'-endo conformation observed in RNA. As compared to the quasi-linear structure of homo-DNA, the axial position of the base in HNA allows efficient base stacking and hence double helix formation.  相似文献   

3.
The crystal structure of an 8-mer (S)-GNA duplex is presented. As a tool for phasing, the anomalous diffraction of two copper(II) ions within two artificial metallo-base pairs was employed. The duplex structure confirms a canonical Watson-Crick base pairing scheme of GNA with antiparallel strands. The duplex secondary structure is distinct from canonical A- and B-form nucleic acids and can be described as a right-handed helical ribbon wrapped around the helix axis, resulting in a large hollow core. Most intriguingly, neighboring base pairs slide strongly against each other, resulting in extensive interstrand base-base hydrophobic interactions along with unusual hydrophobic intrastrand interactions of nucleobases with their backbone. These results reveal how a minimal nucleic acid backbone can support highly stable Watson-Crick-like duplex formation.  相似文献   

4.
Canonical duplex RNA assumes only the A-form conformation at the secondary structure level while, in contrast, a wide range of noncanonical, tertiary conformations of RNA occur. Here, we show how the 2'-hydroxyl controls RNA conformational properties. Quantum mechanical calculations reveal that the orientation of the 2'-hydroxyl significantly alters the intrinsic flexibility of the phosphodiester backbone, favoring the A-form in duplex RNA when it is in the base orientation and facilitating sampling of a wide range of noncanonical, tertiary structures when it is in the O3' orientation. Influencing the orientation of the 2'-hydroxyl are interactions with the environment, as evidenced by crystallographic survey data, indicating the 2'-hydroxyl to sample more of the O3' orientation in noncanonical RNA structures. These results indicate that the 2'-hydroxyl acts as a "switch", both limiting the conformation of RNA to the A-form at the secondary structure level and allowing RNA to sample a wide range of noncanonical tertiary conformations.  相似文献   

5.
Locked nucleic acids (LNAs) containing one or more 2'-O,4'-C-methylene-linked bicyclic ribonucleoside monomers possess a number of the prerequisites of an effective antisense oligonucleotide, e.g. unprecedented helical thermostability when hybridized with cognate RNA and DNA. To acquire a detailed understanding of the structural features of LNA giving rise to its remarkable properties, we have conducted structural studies by use of NMR spectroscopy and now report high-resolution structures of two LNA:RNA hybrids, the LNA strands being d(5'-CTGAT(L)ATGC-3') and d(5'-CT(L)GAT(L)AT(L)GC-3'), respectively, T(L) denoting a modified LNA monomer with a thymine base, along with the unmodified DNA:RNA hybrid. In the structures, the LNA nucleotides are positioned as to partake in base stacking and Watson-Crick base pairing, and with the inclusion of LNA nucleotides, we observe a progressive change in duplex geometry toward an A-like duplex structure. As such, with the inclusion of three LNA nucleotides, the hybrid adopts an almost canonical A-type duplex geometry, and thus it appears that the number of modifications has reached a saturation level with respect to structural changes, and that further incorporations would furnish only minute changes in the duplex structure. We attempt to rationalize the conformational steering induced by the LNA nucleotides by suggesting that the change in electronic density at the brim of the minor groove, introduced by the LNA modification, is causing an alteration of the pseudorotational profile of the 3'-flanking nucleotide, thus shifting this sugar equilibrium toward N-type conformation.  相似文献   

6.
Ribose 2'-amine substitutions are broadly useful as structural probes in nucleic acids. In addition, structure-selective chemical reaction at 2'-amine groups is a robust technology for interrogating local nucleotide flexibility and conformational changes in RNA and DNA. We analyzed crystal structures for several RNA duplexes containing 2'-amino cytidine (C(N)) residues that form either C(N)-G base pairs or C(N)-A mismatches. The 2'-amine substitution is readily accommodated in an A-form RNA helix and thus differs from the C2'-endo conformation observed for free nucleosides. The 2'-amide product structure was visualized directly by acylating a C(N)-A mismatch in intact crystals and is also compatible with A-form geometry. To visualize conformations able to facilitate formation of the amide-forming transition state, in which the amine nucleophile carries a positive partial charge, we analyzed crystals of the C(N)-A duplex at pH 5, where the 2'-amine is protonated. The protonated amine moves to form a strong electrostatic interaction with the 3'-phosphodiester. Taken together with solution-phase experiments, 2'-amine acylation is likely facilitated by either of two transition states, both involving precise positioning of the adjacent 3'-phosphodiester group.  相似文献   

7.
FTIR spectroscopy has been used to follow the formation of parallel stranded DNA duplexes incorporating isoG or m5isoC bases and determine their base pairing scheme. The results are discussed in comparison with data concerning anti-parallel duplexes with comparable base composition and sequence. In duplexes containing A-T and isoG-C or m5isoC-G base pairs shifts of the thymine C2=O2 and C4=O4 carbonyl stretching vibrations (to lower and higher wavenumbers, respectively, when compared to their positions in classical cis Watson-Crick (WC) base pairs) reflect the formation of trans Watson-Crick A-T base pairs. All carbonyl groups of cytosines, m5isocytosines, guanines and isoguanines are found to be involved in hydrogen bonds, indicative of the formation of isoG-C and m5isoC-G base pairs with three hydrogen bonds. Molecular modeling shows that both structures form regular right handed helices with C2'endo sugar puckers. The role of the water content on the helical conformation of the parallel duplexes has been studied by FTIR and CD. It is found that a conformational transition similar to the B --> A transition observed for anti-parallel duplexes induced by a decrease of the water content of the samples can occur for these parallel duplexes. Their helical flexibility has been evidenced by FTIR studies on hydrated films by the emergence of absorption bands characteristic of A type geometry, in particular by an S-type --> N-type repuckering of the deoxyribose. All sugars in the parallel duplex with alternating d(isoG-A)/d(C-T) sequence can adopt an N-type geometry in low water content conditions. The conformational transition of the parallel hairpin duplex with alternating d(isoG-A)/d(C-T) sequence was followed by circular dichroism in water/trifluoroethanol solutions and its free energy at 0 degrees C was estimated to be 6.6 +/- 0.3 kcal mol(-1).  相似文献   

8.
Conformational changes are important in RNA for binding and catalysis and understanding these changes is important for understanding how RNA functions. Computational techniques using all-atom molecular models can be used to characterize conformational changes in RNA. These techniques are applied to an RNA conformational change involving a single base pair within a nine base pair RNA duplex. The Adenine-Adenine (AA) non-canonical pair in the sequence 5'GGUGAAGGCU3' paired with 3'PCCGAAGCCG5', where P is Purine, undergoes conformational exchange between two conformations on the timescale of tens of microseconds, as demonstrated in a previous NMR solution structure [Chen, G., et al., Biochemistry, 2006. 45: 6889-903]. The more populated, major, conformation was estimated to be 0.5 to 1.3 kcal/mol more stable at 30 °C than the less populated, minor, conformation. Both conformations are trans-Hoogsteen/sugar edge pairs, where the interacting edges on the adenines change with the conformational change. Targeted Molecular Dynamics (TMD) and Nudged Elastic Band (NEB) were used to model the pathway between the major and minor conformations using the AMBER software package. The adenines were predicted to change conformation via intermediates in which they are stacked as opposed to hydrogen-bonded. The predicted pathways can be described by an improper dihedral angle reaction coordinate. Umbrella sampling along the reaction coordinate was performed to model the free energy profile for the conformational change using a total of 1800 ns of sampling. Although the barrier height between the major and minor conformations was reasonable, the free energy difference between the major and minor conformations was the opposite of that expected based on the NMR experiments. Variations in the force field applied did not improve the misrepresentation of the free energies of the major and minor conformations. As an alternative, the Molecular Mechanics Poisson-Boltzmann Surface Area (MMPBSA) approximation was applied to predict free energy differences between the two conformations using a total of 800 ns of sampling. MM-PBSA also incorrectly predicted the major conformation to be higher in free energy than the minor conformation.  相似文献   

9.
(L)-alpha-Threofuranosyl-(3'-->2')-oligonucleotides (TNA) containing vicinally connected phosphodiester linkages undergo informational base pairing in an antiparallel strand orientation and are capable of cross-pairing with RNA and DNA. TNA is derived from a sugar containing only four carbon atoms and is one of the simplest potentially natural nucleic acid alternatives investigated thus far in the context of a chemical etiology of nucleic acid structure. Compared to DNA and RNA that contain six covalent bonds per repeating nucleotide unit, TNA contains only five. We have determined the atomic-resolution crystal structure of the B-form DNA duplex [d(CGCGAA)Td(TCGCG)](2) containing a single (L)-alpha-threofuranosyl thymine (T) per strand. In the modified duplex base stacking interactions are practically unchanged relative to the reference DNA structure. The orientations of the backbone at the TNA incorporation sites are slightly altered in order to accommodate fewer atoms and covalent bonds. The conformation of the threose is C4'-exo with the 2'- and 3'-substituents assuming quasi-diaxial orientation.  相似文献   

10.
Arene-fluoroarene interactions offer outstanding possibilities for engineering of supramolecular systems, including nucleic acids. Here, we implement the tolane-perfluorotolane interaction as base pair replacement in DNA. Tolane (THH) and perfluorotolane (TFF) moieties were connected to acyclic backbone units, comprising glycol nucleic acid (GNA) or butyl nucleic acid (BuNA) building blocks, that were incorporated via phosphoramidite chemistry at opposite positions in a DNA duplex. Thermodynamic analyses by UV thermal melting revealed a compelling stabilization by THH/TFF heteropairs only when connected to the BuNA backbone, but not with the shorter GNA linker. Detailed NMR studies confirmed the preference of the BuNA backbone for enhanced polar π-stacking. This work defines how orthogonal supramolecular interactions can be tailored by small constitutional changes in the DNA backbone, and it inspires future studies of arene-fluoroarene-programmed assembly of DNA.  相似文献   

11.
12.
The results of the Monte Carlo Metropolis simulation of water structure and of the hydration of nucleic acid fragments, complementary base pairs and mispairs, base pair stacks, and duplex fragments have been summarized. Systematic investigations suggest some general conclusions: (1) the hydration shell structure of the major and minor grooves of the duplex depends significantly on DNA conformation (or stack configuration) and nucleotide sequence, while global hydration characteristics (average energy, the number of water–water and water–base H-bonds) are only slightly dependent on these factors, (2) hydration economy takes place in the B–A transition due to an increase of the number of water molecules forming hydrogen bonds with two or more atoms of bases (water bridging), and (3) the hydration of the duplex could contribute to nucleic acid functioning via water-bridged mispair formation and stabilization of specific conformations.  相似文献   

13.
BACKGROUND: Synthetic nucleic acid analogues with a conformationally restricted sugar-phosphate backbone are widely used in antisense strategies for biomedical and biochemical applications. The modified backbone protects the oligonucleotides against degradation within the living cell, which allows them to form stable duplexes with sequences in target mRNAs with the aim of arresting their translation. The biologically most active antisense oligonucleotides also trigger cleavage of the target RNA through activation of endogenous RNase H. Systematic studies of synthetic oligonucleotides have also been conducted to delineate the origin of the chirality of DNA and RNA that are both composed of D-nucleosides. RESULTS: Hexitol nucleic acids (HNA) are the first example of oligonucleotides with a six-membered carbohydrate moiety that can bind strongly and selectively to complementary RNA oligomers. We present the first high resolution nuclear magnetic resonance structure of a HNA oligomer bound to a complementary RNA strand. The HNA-RNA complex forms an anti-parallel heteroduplex and adopts a helical conformation that belongs to the A-type family. Possibly, due to the rigidity of the rigid chair conformation of the six-membered ring both the HNA and RNA strand in the duplex are well defined. The observed absence of end-fraying effects also indicate a reduced conformational flexibility of the HNA-RNA duplex compared to canonical dsRNA or an RNA-DNA duplex. CONCLUSIONS: The P-P distance across the minor groove, which is close to A-form, and the rigid conformation of the HNA-RNA complex, explain its resistance towards degradation by Rnase H. The A-form character of the HNA-RNA duplex and the reduced flexibility of the HNA strand is possibly responsible for the stereoselectivity of HNA templates in non-enzymatic replication of oligonucleotides, supporting the theory that nucleosides with six-membered rings could have existed at some stage in molecular evolution.  相似文献   

14.
《Chemistry & biology》1996,3(3):197-206
Background: The natural nucleic acids (DNA and RNA) can adopt a variety of structures besides the antiparallel double helix described by Watson and Crick, depending on base sequence and solvent conditions. Specifically base-paired DNA structures with regular backbone units include left-handed and parallel duplexes and triple and quadruple helical arrangements. Given the base-pairing pattern of the natural bases, preferences for how single strands associate are determined by the structure and flexibility of the sugar-phosphate backbone. We set out to determine the role of the backbone in complex formation by designing DNA analogs with well defined modifications in backbone structure.Results: We recently developed a DNA analog (bicyclo-DNA) in which one (γ) of the six torsion angles (a-ζ) describing the DNA-backbone conformation is fixed in an orientation that deviates from that observed in B-DNA duplexes by about +100°, a shift from the synclinal to the antiperiplanar range. Upon duplex formation between homopurine and homopyrimidine sequences, this analog preferentially selects the Hoogsteen and reversed Hoogsteen mode, forming A-T and G-C+ base pairs. Base-pair formation is highly selective, but degeneracy is observed with respect to strand orientation in the duplex.Conclusions: The flexibility and orientation of the DNA backbone can influence the preferences of the natural bases for base-pairing modes, and can alter the relative stability of duplexes and triplexes.  相似文献   

15.
Peptide nucleic acid (PNA) is a synthetic analogue of DNA that commonly has an N‐aminoethyl glycine backbone. The crystal structures of two PNA duplexes, one containing eight standard nucleobase pairs (GGCATGCC)2, and the other containing the same nucleobase pairs and a central pair of bipyridine ligands, have been solved with a resolution of 1.22 and 1.10 Å, respectively. The non‐modified PNA duplex adopts a P‐type helical structure similar to that of previously characterized PNAs. The atomic‐level resolution of the structures allowed us to observe for the first time specific modes of interaction between the terminal lysines of the PNA and the backbone and the nucleobases situated in the vicinity of the lysines, which are considered an important factor in the induction of a preferred handedness in PNA duplexes. Our results support the notion that whereas PNA typically adopts a P‐type helical structure, its flexibility is relatively high. For example, the base‐pair rise in the bipyridine‐containing PNA is the largest measured to date in a PNA homoduplex. The two bipyridines bulge out of the duplex and are aligned parallel to the major groove of the PNA. In addition, two bipyridines from adjacent PNA duplexes form a π‐stacked pair that relates the duplexes within the crystal. The bulging out of the bipyridines causes bending of the PNA duplex, which is in contrast to the structure previously reported for biphenyl‐modified DNA duplexes in solution, where the biphenyls are π stacked with adjacent nucleobase pairs and adopt an intrahelical geometry. This difference shows that relatively small perturbations can significantly impact the relative position of nucleobase analogues in nucleic acid duplexes.  相似文献   

16.
17.
The process by which DNA repair enzymes recognize and selectively excise damaged bases in duplex DNA is fundamental to our mechanistic understanding of these critical biological reactions. 8-Oxoguanine (8-oxoG) is the most common form of oxidative DNA damage; unrepaired, this lesion generates a G:C-->T:A mutation. Central to the recognition and repair of DNA damage is base extrusion, a process in which the damaged base lesion or, in some cases, its partner disengages from the helix and is bound to the enzyme's active site where base excision takes place. The conformation adopted by 8-oxoG in duplex DNA is affected by the base positioned opposite this lesion; conformational changes may also take place when the damaged base binds to its cognate repair enzyme. We performed unrestrained molecular dynamics simulations for several 13-mer DNA duplexes. Oligomers containing G:C and 8oxoG:C pairs adopted Watson-Crick geometries in stable B-form duplexes; 8oxoG showed increased local and global flexibility and a reduced barrier to base extrusion. Duplexes containing the G:A mismatch showed much larger structural fluctuations and failed to adopt a well-defined structure. For the 8oxoG:A mismatch that is recognized by the DNA glycosylase MutY, the damaged nucleoside underwent spontaneous and reproducible anti-->syn transitions. The syn conformation is thermodynamically preferred. Steric hindrance and unfavorable electrostatics associated with the 8oxoG O8 atom in the anti conformation were the major driving forces for this transition. Transition events follow two qualitatively different pathways. The overall anti-->syn transition rate and relative probability of the two transition paths were dependent on local sequence context. These simulations indicate that both the dynamic and equilibrium behavior of the duplex change as a result of oxidation; these differences may provide valuable new insight into the selective action of enzymes on damaged DNA.  相似文献   

18.
The three-dimensional structure of a unique polymorph of the anticancer drug paclitaxel (Taxol) is established using solid state NMR (SSNMR) tensor ((13)C & (15)N) and heteronuclear correlation ((1)H-(13)C) data. The polymorph has two molecules per asymmetric unit (Z' = 2) and is thus the first conformational characterization with Z' > 1 established solely by SSNMR. Experimental data are correlated with structure through a series of computational models that extensively sample all conformations. For each computational model, corresponding tensor values are computed to supply comparisons with experimental information which, in turn, establishes paclitaxel's structure. Heteronuclear correlation data at thirteen key positions provide shift assignments to the asymmetric unit for each comparison. The two distinct molecules of the asymmetric unit possess nearly identical baccatin III moieties with matching conformations of the C10 acetyl moiety and, specifically, the torsion angle formed by C30-O-C10-C9. Additionally, both are found to exhibit an extended conformation of the phenylisoserine sidechain at C13 with notable differences in the dihedral angles centered around the rotation axes of O-C13, C2'-C1' and C3'-C2'.  相似文献   

19.
5-Fluorouracil (5FU) is an anticancer chemotherapeutic drug which exerts cytotoxic effect by inhibiting cellular DNA replication. In the present study, we explore the binding of 5FU with DNA and resulting structural and conformational changes on DNA duplex. UV-visible, Fourier transform infrared (FTIR) and circular dichroism (CD) spectroscopic techniques were employed to explore these interactions. A constant concentration of calf thymus DNA was incubated with varying concentrations of 5FU. UV-visible and FTIR spectroscopic results revealed that intercalation is the primary mode of interaction between 5FU and nitrogenous bases of the nucleic acid. The binding constant was found to be 9.7×10(4); which is indicative of moderate type of interaction between 5FU and DNA duplex. It was also observed that 5FU intercalates slightly more between AT base pairs compared to GC pairs. FTIR and circular dichroism spectroscopic results revealed that 5FU disturbs native B-conformation of DNA though, DNA remains in its B conformation even at higher concentrations of 5FU.  相似文献   

20.
A GNA (glycol nucleic acid) functionalized nucleoside analogue containing the artificial nucleobase 1H‐imidazo[4,5‐f][1,10]phenanthroline (P) was used to form a copper(I)‐mediated base pair within a DNA duplex. The geometrical constraints imposed by the artificial nucleobase play a pivotal role in this unprecedented stabilization of copper(I) in aqueous medium via metal‐mediated base pairing. The formation of the copper(I)‐mediated base pair was investigated by temperature‐dependent UV spectroscopy and CD spectroscopy. The metal‐mediated base pair stabilizes the DNA oligonucleotide duplex by 23 °C. A redox chemistry approach confirmed that this base pair formation was due to the incorporation of copper(I) into the duplex. This first report of a copper(I)‐mediated base pair adds metal‐based diversity to the field and consequently opens up the range of possible applications of metal‐modified nucleic acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号