共查询到18条相似文献,搜索用时 93 毫秒
1.
以氧化石墨烯为添加物,采用静电纺丝的方法制备不同质量分数的聚丙烯腈/氧化石墨烯(PAN/GO)复合纳米纤维。使用扫描电镜(SEM)、透射电镜(TEM)对复合纳米纤维的微观结构进行观察;采用差示扫描量热仪(DSC)和热重分析仪(TGA)研究复合纳米纤维的热学性能随着氧化石墨烯添加量增加的变化;采用微机控制电子万能试验机对复合纳米纤维的力学性能进行研究。结果表明,加入氧化石墨烯后,纺制的PAN/GO纳米复合纤维会变细,但随着GO添加量的增多出现珠节现象,降低了纤维的粗细均匀度,同时加入GO后对PAN的氧化具有一定的抑制作用,而且GO的加入也使PAN的力学性能增加,当加入量为0.1%时断裂强力增加了一倍,但添加量为1%时,断裂强力又会降低,综合实验结果显示当加入氧化石墨烯的质量分数为0.1%时最适宜。 相似文献
2.
3.
静电纺丝法制备Y2O3纳米纤维与表征 总被引:1,自引:0,他引:1
采用静电纺丝法制备了PVA/Y(NO3)3复合纳米纤维,在适当的温度下进行热处理,得到Y2O3纳米纤维. 利用XRD,SEM,TG-DTA,FTIR等现代分析手段对样品进行了表征. XRD分析表明,PVA/Y(NO3)3复合纤维为无定型,焙烧温度在600 ℃以上得到晶态单相的Y2O3纳米纤维,属于立方晶系,空间群为Ia3. SEM分析表明,PVA/Y(NO3)3复合纤维表面光滑,平均直径为110 nm. 焙烧温度对Y2O3纳米纤维的形成有重要影响. 600 ℃焙烧得到的Y2O3纳米纤维的平均直径约50 nm,900 ℃焙烧得到的Y2O3纳米纤维由纳米颗粒堆积而成,部分已断裂. TG-DTA和FTIR分析表明,PVA,Y(NO3)3以及水分在600 ℃以上时完全分解挥发,最终样品为晶态单相的Y2O3纳米纤维. 相似文献
4.
5.
以聚酰胺酸(PAA)溶液为原料,采用静电纺丝法制备了聚酰胺酸纳米纤维膜(PAAM),热处理脱水后获得聚酰亚胺纳米纤维膜(PIM)。采用PIM表面预涂覆聚甲基丙烯酸(PMAA),以茶碱(THO)为模板分子、偶氮二异丁腈(AIBN)为引发剂、乙二醇二甲基丙烯酸酯(EDMA)为交联剂、氯仿为溶剂,在PIM表面进行了热交联反应,制备了THO分子印迹聚酰亚胺纳米纤维复合膜(PIMIM)。讨论了纺膜条件,并用傅里叶红外光谱与扫描电镜分别表征了PIMIM的结构和形态,比较了THO的洗脱方式。结果表明:较佳的纺膜条件为纺丝电压15.0kV、接收距离12.0cm和纺丝液流量0.5mL/h。以PIM为支撑体,获得了聚酰亚胺纳米纤维间有分子印迹层的PIMIM。PIMIM对THO的静态吸附结合容量达144μmol/g,对THO与可可碱(TB)的选择性分离因子达1.96。对PIMIM循环再生,索氏提取法优于超声洗脱法。 相似文献
6.
静电纺丝法制备聚丙烯腈/聚苯胺复合纳米纤维及其表征 总被引:1,自引:0,他引:1
利用静电纺丝技术,以聚丙烯腈(PAN)和苯胺(ANI)为前驱物,用过硫酸胺(APS)溶液在低温下缓慢氧化聚合,制备了PAN/PANI复合纳米纤维,直径约500 nm.通过扫描电子显微镜(SEM)、红外光谱(FTIR)、X射线衍射(XRD)和激光拉曼(RAMAN)光谱仪等测试手段对材料的形貌和结构进行了表征.探讨了材料制备过程中影响纤维形貌、尺寸、均匀度的因素和PANI含量对复合纤维导电性能的影响,结果表明,PAN浓度、ANI的加入量和电压是影响纤维特性的主要因素;PANI在PAN基体中呈纳米尺寸分布,复合纳米纤维具有良好的导电性能,导电率可达10-2S/cm. 相似文献
7.
利用静电纺丝法与气固反应相结合, 成功地制备了硫化锌掺锰/聚乙烯醇复合纳米纤维, 并对所制备的复合物进行了表征, 探讨了复合物的结构及其性能. 相似文献
8.
9.
10.
将生物材料通过静电纺丝制备成的纳米纤维,具有比表面积大、空隙率高、生物相容性好等优点,因此得到广泛研究。本文主要综述了近年来国内外静电纺丝制备丝素蛋白纳米纤维的研究现状,重点介绍了采用不同溶剂制备的纯丝素蛋白纳米纤维和丝素蛋白与其它材料复合制备的丝素蛋白复合纳米纤维,并展望丝素蛋白纳米纤维潜在的应用前景。 相似文献
11.
聚丙烯腈纳米纤维的再细化 总被引:12,自引:0,他引:12
通过电纺丝法研究了溶剂种类、溶液浓度、纺丝倾斜角、聚合物分子量对纳米纤维形态和直径的影响,寻找到最佳工艺条件,并得到了平均直径为20nm的超细纤维. 相似文献
12.
采用静电纺丝技术,以联苯四甲酸二酐(BPDA)和4,4'-二氨基二苯醚(ODA)为单体,硝酸银为银源,通过两步法制备含银聚酰亚胺(PI/Ag)纳米纤维.通过X射线衍射(XRD)、透射电子显微镜(TEM)及扫描电子显微镜(SEM)表征了PI/Ag纳米纤维的结构和微观形貌;通过浸渍培养法研究了聚酰亚胺(PI)及PI/Ag纳米纤维的抑菌性能.结果表明,聚酰亚胺基体中存在单质银的立方晶体结构,银粒子在聚酰亚胺基体表面均匀分散,平均粒径为10 nm;PI/Ag纳米纤维对大肠杆菌(E.coli)、金黄色葡萄球菌(S.aureus)和枯草芽孢杆菌(B.subtilis)表现出良好的抑菌效果,最大抑菌率可达99.1%,为聚酰亚胺在耐高温抑菌生物医用材料等领域的应用提供了新的方向. 相似文献
13.
为获得结构完整、 性能优良的纳米碳纤维前驱体, 采用静电纺丝法制备了掺杂羧基化多壁碳纳米管(MWCNTs)的聚丙烯腈(PAN)纳米纤维. 用扫描电子显微镜、 偏振红外光谱、 透射电子显微镜、 拉曼光谱及拉伸性能测试等对杂化纳米纤维的微观结构和力学性能进行了研究, 分析了MWCNTs含量的影响. 实验结果表明, 5%(质量分数)的MWCNTs掺杂量为杂化纳米纤维直径的突变点, 且MWCNTs的加入有利于PAN分子链的取向, MWCNTs在PAN纤维中大体上沿纤维轴向取向分布. 3%MWCNTs/PAN杂化纳米纤维的拉伸强度和拉伸模量分别达到88.6 MPa和3.21 GPa. 相似文献
14.
采用高压静电纺丝技术, 在非对称异型电极上制备得到放射状聚酰亚胺(PI)纳米纤维膜. 采用环境扫描电子显微镜(ESEM)观察了PI膜的微观形貌以及纳米纤维的排列状态; 采用接触角测量仪研究了水滴浸润性的变化; 采用高敏感性力学微电力学天平测量了水滴的黏附力, 分析了微观形貌变化与水滴浸润性质和黏附性质的关系. 结果表明, 该PI纳米纤维膜沿着非对称异型电极三角电极至弧型电极方向纤维排列由密到疏, 呈放射状, 具有独特的微结构梯度; 整个纤维膜上的PI纳米纤维直径均一且具有光滑均匀表面, 纤维与纤维之间的距离约为几微米到几十微米. 由于PI纳米纤维膜所具有的独特的微结构梯度, 致使沿着微结构梯度方向水滴的接触角(从超疏水到疏水)和黏附力(从低黏附到高黏附)均表现出梯度变化的特征. 相似文献
15.
静电纺丝法制备Mn_2O_3纳米纤维及其磁性研究 总被引:1,自引:0,他引:1
采用溶胶-凝胶过程和静电纺丝技术相结合方法, 以聚丙烯腈和醋酸锰为前驱物, 制得了PAN/Mn(CH3COO)2复合纳米纤维. 将该复合纤维高温煅烧, 获得了Mn2O3纳米纤维. 采用扫描电镜(SEM)、红外光谱(FTIR)、差热-热重(TG-DTA)和X射线衍射(XRD)分析等对样品进行了表征. 结果表明, Mn2O3纳米纤维为规则的一维结构, 直径分布均匀, 具有铁磁性-反铁磁性-顺磁性相互转化的特性. 相似文献
16.
采用静电纺丝法制备PET/CTS复合纳米纤维膜,并在纤维膜表面吸附一层纳米银,进一步增加纤维膜的抗菌性能.以扫描电镜(SEM)对不同配比PET/CTS所制备的纤维膜的微观形貌进行表征,结果显示w(CTS)/w(PET)为12.5%时,纤维形貌较好,平均直径为405 nm.分别对不同厚度的PET/CTS纤维膜进行力学性能、透气性能以及空气过滤性能测试,结果表明纺丝时间为7 h时,纤维膜具有较好的性能,其弹性模量为48.15 MPa、断裂伸长率183.30%、拉伸断裂应力2.11 MPa、拉伸强度2.49 MPa、拉伸屈服应力1.23 MPa、最大力1.38 N,阻气值为3.99 k Pa·S/m,过滤效率为99.55%,压降为621.32 Pa.吸附银离子实验表明,最佳GA交联浴配比为GA(vol%)=3.5%.紫外可见光谱(UV)及透射电镜(TEM)表征证明,有10 nm左右纳米银生成.抑菌实验表明,载银PET/CTS复合纳米纤维膜对金黄色葡萄球菌(S.a.)和大肠杆菌(E.coli.)的杀菌率分别为99.97%和99.99%. 相似文献
17.
静电纺丝是通过对聚合物溶液或熔体施加外电场制造纳米纤维的有效方法.电纺过程中,在静电力作用下聚合物射流快速鞭动,形成的纳米纤维无规堆砌,得到无纺布状的无规纳米纤维膜.这种纳米纤维膜具有极大的比表面积,已用于超高效过滤,在刨伤修复、组织工程、水处理等领域有广泛的应用前景.为了进一步拓展纳米纤维在纤维工业、纺织品、微制造等领域的应用,电纺纳米纤维的取向和连续长纱的制备研究受到科学家的重视,文献报道了多种纳米纤维取向方法.本文分析了纳米纤维膜无规堆砌结构的形成机理,总结了纳米纤维取向研究和连续长纱制备研究进展,特别介绍了基于静电作用分析提出的共轭电纺方法,讨论了取向纳米纤维的应用以及纳米纤维未来的研究方向. 相似文献
18.
WANG Wei WANG Ke HE Jiaojie ZHANG Xintong WANG Ce ZHAO Zhiwei CUI Fuyi 《高等学校化学研究》2015,31(6):1012-1017
Nanoparticle(NP)/nanofiber(NF) composites based on Ag/hydrostable-polyvinyl alcohol were fabricated by a green synergistic strategy via electrospinning. The electrospun NFs served as an in situ reducing agent for the metal salt precursors and a protecting agent for the resulting NPs. Additionallly, during the fomation of the NPs, the water-soluble NFs were in situ oxidized and catalyzed by the metal ions to achieve chemical crosslinking. This two-in-one process achieves polymer curing and metal nanoparticles reducing/protecting synergistically. It eliminates the usage of organic electrospinning solvents, conventional chemical reducing agents and stabilizers, as well as harmful chemical crosslinking agents during the whole process. By the absolutely green synergistic electrospinning, nanoparticle/nanofiber composites with super-hydrophilicity, good hydrostability, as well as uniform and thin particle sizes were obtained. They exhibited enhanced activities when used for catalytic hydrogenation of p-nitrophenol in water. 相似文献