首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
离子液体的制备及其在酶催化反应中的应用   总被引:3,自引:0,他引:3  
夏咏梅  吴红平  张玥  方云  孙诗雨  石玉刚 《化学进展》2006,18(12):1660-1667
离子液体,尤其是非水溶性离子液体可以作为一种溶剂或酶的载体用于非水相酶促反应中,也可以用于双相体系中的酶促反应。本文概括性介绍了常见离子液体的制备,总结和讨论了离子液体中酶的活性、稳定性、反应选择性以及各类酶在离子液体中的催化反应行为。离子液体的物性及其与酶的相容性对酶本身及酶促反应都有很大的影响。在非水相酶促反应中,离子液体的极性作用不遵从通常用来判别大多数有机物溶剂行为的规则,比如lgP规则。  相似文献   

2.
建立了毛细管电泳快速测定生物样品中腺苷脱氨酶(ADA)活性的方法。以小鼠血红细胞为研究对象,利用其中的ADA可将腺苷转化为肌苷这一酶促反应,在优化的电泳条件下分析检测酶促反应结果,通过肌苷的生成速率计算红细胞中ADA的活性。CE可以完全分离酶促样品中的腺苷和肌苷,且不受细胞中其他成分干扰,产物肌苷的相对峰面积在0.10~1.0 mmol/L范围内有好的线性关系,且重现性好;该法测定的肝癌小鼠血红细胞中ADA的活性高于正常小鼠血红细胞。  相似文献   

3.
以酪蛋白水解度为指标,采用pH-stat法优化了胰蛋白酶催化酪蛋白水解的反应条件,并以该酶为检测用酶,分析了酪蛋白浓度与酶解反应初速度的关系,并建立了一种快速检测牛奶中蛋白质含量的方法.在pH=7.5,温度55℃的条件下,用pH-stat法测得酪蛋白浓度与酶促蛋白质水解反应初速度呈良好线性关系.最后采用该酶催化水解法测...  相似文献   

4.
综述了近年来微波对酶催化反应的影响,包括对酶催化反应速度与转化率或产率的影响,对酶促反应选择性与专一性的影响,对酶结构和活性的影响.总结了研究微波效应的几种技术方法及其在酶催化反应中的应用情况.  相似文献   

5.
利用线性荧光探针作为核酸连接反应的模板和信号分子, 通过实时监测荧光信号的降低来表征连接产物的生成过程, 从而建立了一种连续、简单且特异性高的T4 DNA连接酶活性分析的新方法, 检出限可达1.2 U/mL; 同时, 该方法还可用于快速考察金属离子和化学药物对酶促反应的影响. 实验结果表明, 该法不仅为灵敏、实时监测核酸连接反应提供了一种简便快捷的非同位素分析方法, 也为开展核酸连接酶活性分析、反应动力学机制探讨和药物快速筛选提供了一种新技术.  相似文献   

6.
以硅藻土吸附的脂肪酶为催化剂,对外消旋酮基布洛芬[2-(3-苯甲酰苯基)丙酸]进行对映选择性酯化反应;考察了不同的脂肪酶制剂,固定化时所加缓冲液的体积与pH值,酰基受体(醇)的种类以及混合溶剂系统的组成等因素对酶活性的影响.结果表明,在所考察的7种脂肪酶中,以LipaseOF的酪化活性最高;用硅藻土吸附固定化酶时,缓冲溶液的最适pH为7.0左右,每克酶粉加1.0mL缓冲溶液为最佳;固定化酶催化酯化的活性比游离的脂肪酶高.在酮基布洛芬与不同酰基受体(醇)的酶促酯化反应中,以丙醇的反应速度为最快.在由一种主溶剂与一种助溶剂组成的混合溶剂系统中,酶促酯化的速度要比在单一的主溶剂或助溶剂系统中快.当以1gP值较大的环己烷或异辛烷等为主溶剂,甲苯为助溶剂时,脂肪酶催化酮基布洛芬酯化反应的活性最高.  相似文献   

7.
离子液体中酶促区域选择性合成CFAE   总被引:1,自引:0,他引:1  
石玉刚  蔡燕  励建荣  朱延和 《化学进展》2011,23(11):2247-2257
碳水化合物脂肪酸酯(CFAE)作为一类非离子型生物表面活性剂,被广泛用于食品、医药及化妆品工业,一些CFAE还具有抗菌、抗肿瘤等特殊生物活性。非水介质中酶促区域选择性合成CFAE反应的瓶颈在于高极性碳水化合物与酰基供体不易相溶,并具有多个可酰化羟基。传统有机溶剂虽能提高极性底物在体系中溶解度,但常使酶活下降。新型绿色介质离子液体用于CFAE的酶法合成过程具有诸多优点,不仅生物催化剂能维持较好的活性与稳定性,且良好的底物溶解性可改善反应区域选择性及转化速率,反应体系还可重复利用。本文介绍了离子液体中影响酶促区域选择性合成CFAE反应的主要因素,包括酶、底物在离子液体中的溶解性能及底物自身性质等,详述了离子液体中酶促制备CFAE的研究进展,也指出了酶促合成CFAE存在的问题与发展前景。  相似文献   

8.
微波辐射-酶耦合催化(MIECC)反应   总被引:3,自引:0,他引:3  
将微波辐射用于非水相酶催化可以获得很多有别于常规加热下的反应结果.本文讨论了微波的非热效应在酶促反应中的表现,探讨了微波辐射对酶的结构、构象、活性及酶催化反应动力学的影响,以及微波辐射-酶耦合催化对反应的对映选择性、底物专一性、前手性选择性和区域选择性的影响.在大多数场合,适当的微波辐射不会损伤酶活而且可以提高反应速率,而对酶特异性的影响则不一而论.  相似文献   

9.
将微波辐射用于非水相酶催化可以获得很多有别于常规加热下的反应结果.本文讨论了微波的非热效应在酶促反应中的表现,探讨了微波辐射对酶的结构、构象、活性及酶催化反应动力学的影响,以及微波辐射-酶耦合催化对反应的对映选择性、底物专一性、前手性选择性和区域选择性的影响.在大多数场合,适当的微波辐射不会损伤酶活而且可以提高反应速率,而对酶特异性的影响则不一而论.  相似文献   

10.
羧甲基纤维素水凝胶生物降解动力学研究   总被引:4,自引:0,他引:4  
用氯化铝对羧甲基纤维素进行交联,制得了水凝胶.考察了底物浓度、酶浓度以及降解温度对该水凝胶降解速率的影响,探讨了酶降解动力学及“表观”活化能对酶浓度的依赖关系.结果表明,该酶促反应最佳温度为37 ℃,降解反应对底物浓度和酶浓度的反应级数分别为1级和1.2级;得到了与传统的Michaelis-Menten动力学机制不同的非均相酶促反应动力学模型,确定了“表观”活化能与酶浓度之间的定量关系.  相似文献   

11.
The OGG1 proteins are DNA N-glycosylases-apurinic-apyrimidinic lyases that are responsible for the removal of 8-oxo-7,8-dihydroguanine (8-oxoG) base in DNA. The human enzyme (hOGG1) is a monomer of 345 amino acids containing 10 buried tryptophan (Trp) residues that are very sensitive to UVB irradiation. The photolysis quantum yield of these Trp residues is about 0.3 and 0.1 in argon- and air-saturated solutions, respectively. Matrix-assisted laser desorption-ionization-time-of-flight mass spectrometry shows that several cleavage sites are identical under aerobic and anaerobic photolysis of Trp residues; one of them includes the active site. Western blots and polyacrylamide gel electrophoresis indicate that fragments of high molecular size are also formed. In addition to common photochemical paths with argon-saturated solutions, specific reactions occur in air-saturated solutions of hOGG1. The photolysis rate is inhibited by more than 50% on binding of hOGG1 to a 34mer oligonucleotide containing a single 8-oxoG-C base pair. Binding to the oligonucleotide with 8-oxoG-C induced a 20% quenching of the hOGG1 fluorescence, suggesting interaction of nucleic acid bases with the Trp residue(s) responsible for the photolysis. Using 2,6-diamino-4-hydroxy-5-N-methylformamidopyrimidine (Me-FapyG) and 8-oxoG as substrates, it is shown that protein photolysis induces photoinactivation of the DNA N-glycosylase activities. The excision of 8-oxoG is more affected than that of Me-FapyG at the same dose of UVB irradiation under both air and argon conditions. Besides the role of Trp residues, the possible involvement of Cys 253 in the photoinactivation process of hOGG1 is discussed.  相似文献   

12.
The molecular dynamics (MD) simulation of DNA mutagenic oxidative lesion, 7,8-dihydro-8-oxoguanine (8-oxoG), complexed with the repair enzyme, human oxoguanine glycosylase 1 (hOGG1), was performed for 1 nanosecond (ns) in order to describe the dynamical process of DNA-enzyme complex formation. After 900 picoseconds of MD the lesioned DNA and enzyme formed a complex that lasted until the end of the simulation at 1 ns. The complex was mainly represented by the overlapping van der Waals surfaces of DNA and enzyme molecules. The amino group of arginine 324 was located close to the phosphodiester bond of the nucleotide with 8-oxoG enabling chemical reactions between amino acid and lesion. The broken hydrogen bonds resulting in locally collapsed B-DNA structure were observed at the lesion site. The phosphodiester bond at C5' of 8-oxoG was displaced to the position close to the amino group of arginine 324. The water-mediated hydrogen bond network was formed in each contact area between DNA and enzyme, further enhancing the stability of the complex. In the background simulation of the identical molecular system with the native DNA, neither the complex nor the water- mediated hydrogen bond network was observed.  相似文献   

13.
Accumulation and misincorporation of oxidative damaged 8-oxo-7,8-dihydroguanine triphosphates (8-oxo-dGTP) in genomic DNA may cause serious cellular function disorders. MutT Homolog 1 (MTH1), a protein enzyme that can help to prevent 8-oxo-dGTP misincorporation, plays critical roles in oxidative stress neutralization, oncogene-associated tumor malignancy, and anticancer therapies. So, in this work, a simple and function-oriented method is developed for the assay of MTH1 activity. Specifically, a mismatch-based (“8-oxoG: A” mismatch) DNA chain elongation strategy (MB-DCE) is firstly proposed to reveal the misincorporation efficiency of 8-oxo-dGTP. Then, further coupled with the inherent activity of MTH1 to prevent 8-oxo-dGTP misincorporation, a relationship can be established to reveal the activity of MTH1 through MB-DCE. As the method is designed directly towards the cellular function of MTH1, activity of MTH1 in different breast cancer cell lines has been detected, implying the potential application of this assay method for biomedical research and clinical diagnose in the future.  相似文献   

14.
Repair glycosylases locate and excise damaged bases from DNA, playing central roles in preservation of the genome and prevention of disease. Two key glycosylases, Fpg and hOGG1, function to remove the mutagenic oxidized base 8-oxoG (OG) from DNA. To investigate the relative contributions of conformational preferences, leaving group ability, enzyme-base hydrogen bonding, and nucleobase shape on damage recognition by these glycosylases, a series of four substituted indole nucleosides, based on the parent OG nonpolar isostere 2Cl-4F-indole, were tested as possible direct substrates of these enzymes in the context of 30 base pair duplexes paired with C. Surprisingly, single-turnover experiments revealed that Fpg-catalyzed base removal activity of two of the nonpolar analogs was superior to the native OG substrate. The hOGG1 glycosylase was also found to catalyze removal of three of the nonpolar analogs, albeit considerably less efficiently than removal of OG. Of note, the analog that was completely resistant to hOGG1-catalyzed excision has a chloro-substituent at the position of NH7 of OG, implicating the importance of recognition of this position in catalysis. Both hOGG1 and Fpg retained high affinity for the duplexes containing the nonpolar isosteres. These studies show that hydrogen bonds between base and enzyme are not needed for efficient damage recognition and repair by Fpg and underscore the importance of facile extrusion from the helix in its damaged base selection. In contrast, damage removal by hOGG1 is sensitive to both hydrogen bonding groups and nucleobase shape. The relative rates of excision of the analogs with the two glycosylases highlight key differences in their mechanisms of damaged base recognition and removal.  相似文献   

15.
Human 8-oxo-G-DNA glycosylase 1 (hOGG1) is a DNA glycosylase to cleave 8-oxo-7,8-dihydroguanine (8-oxo-G), a mutagenic DNA adduct formed by oxidant stresses. Here, we examined hOGG1 protein expression and repair activity to nick a DNA strand at the site of 8-oxo-G during differentiation of hematopoietic cells using HL-60 cells. Overall expression of hOGG1 protein was increased during granulocytic differentiation of HL-60 cells induced by DMSO and monocytic differentiation by vitamine D(3). Greater level of hOGG1 protein was expressed in DMSO-treated cells. However, change in the DNA nicking activity was not in parallel with the change in hOGG1 protein expression, especially in PMA-treated cells. In PMA- treated cells, the level of hOGG1 protein was lowered, even though the DNA nicking activity was elevated, in a manner similar to the changes in serum- deprived HL-60 cells. These results indicate that hOGG1 expression change during differentiation of hematopoietic stem cells for adaptation to new environments. And the DNA cleaving activity may require additional factor(s) other than expressed hOGG1 protein, especially in apoptotic cell death.  相似文献   

16.
DNA glycosylase enzymes recognize and remove structurally distinct modified forms of DNA bases, thereby repairing genomic DNA from chemically induced damage or erasing epigenetic marks. However, these enzymes are often promiscuous, and advanced tools are needed to evaluate and engineer their substrate specificity. Thus, in the present study, we developed a new strategy to rapidly profile the substrate specificity of 8-oxoguanine glycosylases, which cleave biologically relevant oxidized forms of guanine. We monitored the enzymatic excision of fluorophore-labeled oligonucleotides containing synthetic modifications 8-oxoG and FapyG, or G. Using this molecular beacon approach, we identified several hOGG1 mutants with higher specificity for FapyG than 8-oxoG. This approach and the newly synthesized probes will be useful for the characterization of glycosylase substrate specificity and damage excision mechanisms, as well as for evaluating engineered enzymes with altered reactivities.

A three-color fluorescent molecular beacon assay for rapid profiling of substrate specificity of hOGG1 variants, and for engineering proteins to map genomic modifications.  相似文献   

17.
Herein, we introduced a tungsten disulfide (WS2) nanosheet and exonuclease III (Exo III) co-assisted signal amplification strategy for highly sensitive fluorescent polarization (FP) assay of DNA glycosylase activity. Two DNA glycosylases, uracil-DNA glycosylase (UDG) and human 8-oxoG DNA glycosylase 1 (hOGG1), were tested. A hairpin-structured probe (HP) which contained damaged bases in the stem was used as the substrate. The removal of damaged bases from substrate by DNA glycosylase would lower the melting temperature of HP. The HP was then opened and hybridized with a FAM dye-labeled single strand DNA (DP), generating a duplex with a recessed 3′-terminal of DP. This design facilitated the Exo III-assisted amplification by repeating the hybridization and digestion of DP, liberating numerous FAM fluorophores which could not be adsorbed on WS2 nanosheet. Thus, the final system exhibited a small FP signal. However, in the absence of DNA glycosylases, no hybridization between DP and HP was occurred, hampering the hydrolysis of DP by Exo III. The intact DP was then adsorbed on the surface of WS2 nanosheet that greatly amplified the mass of the labeled-FAM fluorophore, resulting in a large FP value. With the co-assisted amplification strategy, the sensitivity was substantially improved. In addition, this method was applied to detect UDG activity in cell extracts. The study of the inhibition of UDG was also performed. Furthermore, this method is simple in design, easy in implementation, and selective, which holds potential applications in the DNA glycosylase related mechanism research and molecular diagnostics.  相似文献   

18.
Direct visualization of a DNA glycosylase searching for damage   总被引:3,自引:0,他引:3  
DNA glycosylases preserve the integrity of genetic information by recognizing damaged bases in the genome and catalyzing their excision. It is unknown how DNA glycosylases locate covalently modified bases hidden in the DNA helix amongst vast numbers of normal bases. Here we employ atomic-force microscopy (AFM) with carbon nanotube probes to image search intermediates of human 8-oxoguanine DNA glycosylase (hOGG1) scanning DNA. We show that hOGG1 interrogates DNA at undamaged sites by inducing drastic kinks. The sharp DNA bending angle of these non-lesion-specific search intermediates closely matches that observed in the specific complex of 8-oxoguanine-containing DNA bound to hOGG1. These findings indicate that hOGG1 actively distorts DNA while searching for damaged bases.  相似文献   

19.
One nanosecond molecular dynamics (MD) simulation was performed for two DNA segments each composed of 30 base pairs. In one DNA segment the native guanines at nucleotides positions 17 and 19 were replaced with two 8-oxoguanines (8-oxoG) (8-oxoG is mutagenic DNA oxo-lesion). The analysis of results was focused on the electrostatic energy that is supposed to be significant factor causing the disruption of DNA base stacking in DNA duplex and may also serve as a signal toward the repair enzyme informing the presence of the lesion. The repulsive interaction between 8-oxoG and the entire DNA molecule was observed, which caused the extrahelical position of 8-oxoG (position 19). The repulsive electrostatic interaction between both 8-oxoG lesions contributed to the flipping out of one 8-oxoG and to the local instability of the lesioned DNA region. The electrostatic potential at the surface of DNA close to the lesions has more negative value than the same region on the native DNA. This electrostatic potential may signal presence of the lesion to the repair enzyme. In the simulation of native DNA segment, no significant structural changes were observed and B-DNA structure was well preserved throughout the MD simulation.  相似文献   

20.
One nanosecond molecular dynamics (MD) simulation was performed for two DNA segments each composed of 30 base pairs. In one DNA segment the native guanines at nucleotides positions 17 and 19 were replaced with two 8-oxoguanines (8-oxoG) (8-oxoG is mutagenic DNA oxo-lesion). The analysis of results was focused on the electrostatic energy that is supposed to be significant factor causing the disruption of DNA base stacking in DNA duplex and may also serve as a signal toward the repair enzyme informing the presence of the lesion. The repulsive interaction between 8-oxoG and the entire DNA molecule was observed, which caused the extrahelical position of 8-oxoG (position 19). The repulsive electrostatic interaction between both 8-oxoG lesions contributed to the flipping out of one 8-oxoG and to the local instability of the lesioned DNA region. The electrostatic potential at the surface of DNA close to the lesions has more negative value than the same region on the native DNA. This electrostatic potential may signal presence of the lesion to the repair enzyme. In the simulation of native DNA segment, no significant structural changes were observed and B-DNA structure was well preserved throughout the MD simulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号