首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Novel abrasion resistant coating materials prepared by the sol-gel method have been developed and applied on the polymeric substrates bisphenol-A polycarbonate and diallyl diglycol carbonate resin (CR-39). These coatings are inorganic/organic hybrid network materials synthesized from 3-isocyanatopropyltriethoxysilane functionalized organics and metal alkoxide. The organic components are 3,3-iminobispropylamine (IMPA), resorcinol (RSOL), diethylenetriamine (DETA), poly(ethyleneimine) (PEI), glycerol and a series of diols. The metal alkoxides are tetraethoxysilane (TEOS) and tetramethoxysilane (TMOS). These materials are spin coated onto bisphenol-A polycarbonate and CR-39 sheets and thermally cured to obtain a transparent coating of a few microns in thickness. Following the curing, the abrasion resistance is measured and compared with an uncoated control. It was found that the abrasion resistance of inorganic/organic hybrid coatings in the neat form or containing metal alkoxide can be very effective to improve the abrasion resistance of polymeric substrates. The adhesion tests show that the adhesion between coating and substrate can be greatly improved by treating the polymeric substrate surface with a primer solution of isopropanol containing 3-aminopropyltriethoxysilane (3-APS). The interaction between 3-APS and the polycarbonate surface was investigated by a molecular dynamics simulation. The results strongly suggest that the hydrogen bonding between the amino group of the 3-APS and ester group in the polycarbonate backbone are sufficiently strong to influence the orientation of the primer molecules. The abrasion resistance of these new coating systems is discussed in light of the structure of the organic components. All of these results show that these coating materials have excellent abrasion resistance and have potential applications as coating materials for lenses and other polymeric products.  相似文献   

2.
Organic/inorganic hybrid composites from cubic silsesquioxanes.   总被引:10,自引:0,他引:10  
A new class of epoxy nanocomposites with completely defined organic/inorganic phases was prepared by reacting octakis(glycidyldimethylsiloxy)octasilsesquioxane [(glydicylMe(2)SiOSiO(1.5))(8)] (OG) with diaminodiphenylmethane (DDM) at various compositional ratios. The effects of reaction curing conditions on nanostructural organization and mechanical properties were explored. A commercial epoxy resin based on the diglycidyl ether of bisphenol A (DGEBA) was used as a reference material throughout these studies. FTIR was used to follow the curing process and to demonstrate that the silsesquioxane structure is preserved during processing. OG/DDM composites possess comparable tensile moduli (E) and fracture toughness (K(IC)) to, and better thermal stabilities than, DGEBA/DDM cured under similar conditions. Dynamic mechanical analysis and model reaction studies suggest that the maximum cross-link density is obtained at N = 0.5 (NH(2):epoxy groups = 0.5) whereas the mechanical properties are maximized at N = 1.0. Digestion of the inorganic core with HF followed by GPC analysis of the resulting organic tether fragments when combined with the model reaction studies confirms that, at N = 0.5, each organic tether connects four cubes, while, at N = 1.0, linear tethers connecting two cubes dominate the network structure. Thus, well-defined nanocomposites with controlled variation of the organic tether architecture can be made and their properties assessed.  相似文献   

3.
A relationship between the standard free energies of adsorption from aqueous solution at the oil/water interface and the radii of organic cations as exemplified by symmetric tetraakylammonium salts has been studied. Hydrophobic effects are shown to be major contributors to the interaction of surfactants with the interface. An adsorption coefficient to quantitate the hydrophobic effects and to specify the changes of standard adsorption energy depending upon the cavity surface area of the detergent hydrocarbon radical in aqueous solution has been proposed. A new formulation of the Traube rule, taking into account the hydrophobic effects concomitant with a transfer of surfactants from the water bulk onto the interface, has also been given.Standard free energies for the adsorption of organic and inorganic ions from aqueous solution at the interface of immiscible liquids have been found. The proposed method is based on an extrapolation of the relationship between the standard adsorption energy of tetraalkylammonium salts and the square of cationic radius to zero ionic radius. The standard free energy of adsorption for an inorganic counter-ion is derived from an intercept on the y-axis cut off by a straight line. The experimental adsorption data on inorganic salts have been used to calculate the standard free energies of adsorption for a variety of ions.A method of estimating the difference in potential at the oil/water interface between the adsorption plane and the aqueous solution has been proposed. The sign of potential provides a clue to the orientation of water molecules at the interface between immiscible liquids.  相似文献   

4.
Study of cure kinetics of epoxy-silica organic-inorganic hybrid materials   总被引:1,自引:0,他引:1  
Cure kinetics of organic-inorganic hybrids based on epoxy resin was investigated, using differential scanning calorimetry (DSC). Thermoset hybrid materials were prepared from diglycidyl ether of bisphenol A (DGEBA) as organic precursor, and 3-glycidyloxypropyltrimethoxysilane (GLYMO) as inorganic precursor. Precursors were polymerised simultaneously using poly(oxypropylene)diamine (Jeffamine D230) as a curing agent. Isothermal DSC characterisation of DGEBA/Jeffamine system and two hybrid DGEBA/GLYMO/Jeffamine systems, with DGEBA and GLYMO mixed in mass ratios of 2:1 and 1:1, respectively, was performed at different temperatures. Applicability of empirical models, commonly used to describe the curing kinetics of thermosets, to hybrid systems was investigated, and the resulting parameters were tested on dynamic DSC scans. Additionally, prepared materials were studied by FTIR and the extraction in tetrahydrofuran. The presence of inorganic phase was found to hinder complete cross-linking of organic phase and influence the kinetics of cure.  相似文献   

5.
Polyphenylsilsesquioxane (PPSQ) was incorporated into an epoxy resin to prepare organic–inorganic composites, and two strategies were adopted to afford composites with different morphologies. Phase separation induced by polymerization occurred in the physical blending system. However, nanostructured composites were obtained when a catalytic amount of aluminum triacetylacetonate was added to mediate the reaction between PPSQ and diglycidyl ether of bisphenol A (DGEBA). The intercomponent reaction significantly suppressed the phase separation on the micrometer scale. Organic–inorganic composites with different morphologies displayed quite different thermomechanical properties. Both differential scanning calorimetry and dynamic mechanical analysis showed that the nanostructured composites possessed higher glass‐transition temperatures than the phase‐separated composites with the same loading of PPSQ, although the intercomponent reaction between PPSQ and DGEBA reduced the crosslinking density of the epoxy matrix. This result was ascribed to the presence of nanosized PPSQ domains in the nanostructured composites, which acted as physical crosslinking sites and thus reinforced the epoxy networks. The nanoreinforcement of the PPSQ domains afforded the enhanced dynamic storage modulus for the nanostructured composites in comparison with the phase‐separated composites with a PPSQ concentration less than 15 wt %. In terms of thermogravimetric analysis, the organic–inorganic composites displayed improved thermal stability and flame retardancy. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1093–1105, 2006  相似文献   

6.
A new process for preparing oligonucleotide arrays is described that uses surface grafting chemistry which is fundamentally different from the electrostatic adsorption and organic covalent binding methods normally employed. Solid supports are modified with a mixed organic/inorganic zirconium phosphonate monolayer film providing a stable, well-defined interface. Oligonucleotide probes terminated with phosphate are spotted directly on to the zirconated surface forming a covalent linkage. Specific binding of terminal phosphate groups with minimal binding of the internal phosphate diesters has been demonstrated. The mixed organic/inorganic thin films have also been extended for use arraying DNA duplex probes, and therefore represent a viable general approach to DNA-based bioarrays. Ideas for interfacing mixed organic/inorganic interfaces to other bioapplications are also discussed.  相似文献   

7.
The use of homoionic organic clays and mixed-ion organic/inorganic clays modified by di- or triamines (Jeffamines), which are being used as epoxy resin curing agents, in the synthesis of polymer nanocomposites has been studied in this work. Our aim is to enhance polymer crosslinking and interfacial adhesion in the nanocomposite structure by utilizing the functionality of the di/triamines on the surface of clay nanolayers and by reducing the organic modifier via formation of homostructured mixed-ion organic/inorganic clays. The results show that the use of homoionic organic clays exchanged with relatively short chain di- or triamines and mixed-ion organic/inorganic clays partially exchanged (ca. 35%) with long chain diamines resulted in intercalated structures with enhanced thermo-mechanical properties (Young's Modulus, Storage Modulus). On the other hand, homoionic organic clays exchanged with long chain diamines and triamines resulted in exfoliated nanocomposites but with compromised mechanical properties due to the plasticizing effect of the long chain amine modifiers.  相似文献   

8.
 Microcapsules containing phase-change material for thermal adaptable fiber application were synthesized and characterized. The microcapsules of about 1 μm in diameter were prepared using an interfacial polycondensation method with toluene-2,4-diisocyanate (TDI) and diethylenetriamine (DETA) as monomers in an emulsion system. Octadecane was used as a phase-change material and NP-10 which is nonionic surfactant, was used as an emulsifier. To investigate the reaction ratio of monomers, microcapsules were synthesized with 3 g TDI and 0–4 g DETA. Polyurea microcapsules were formed not only by reaction with TDI and DETA, but also by reaction of TDI with hydrolyzed TDI at the interface. TDI was reacted with DETA in the weight ratio of 3:1. NP-10 was reacted with TDI to form urethane. The microcapsules containing octadecane showed a phase change of octadecane at 29–30 °C. The core content measured using the heat of fusion of octadecane was less than that calculated. The efficiency of octadecane encapsulation increased as the core content decreased. Received: 17 July 2001 Accepted: 13 September 2001  相似文献   

9.
A new process for preparing oligonucleotide arrays is described that uses surface grafting chemistry which is fundamentally different from the electrostatic adsorption and organic covalent binding methods normally employed. Solid supports are modified with a mixed organic/inorganic zirconium phosphonate monolayer film providing a stable, well-defined interface. Oligonucleotide probes terminated with phosphate are spotted directly to the zirconated surface forming a covalent linkage. Specific binding of terminal phosphate groups with minimal binding of the internal phosphate diesters has been demonstrated. On the other hand, the reaction of a bisphosphonate bone resorption inhibitor (Zoledronate) with calcium deficient apatites (CDAs) was studied as a potential route to local drug delivery systems active against bone resorption disorders. A simple mathematical model of the Zoledronate/CDA interaction was designed that correctly described the adsorption of Zoledronate onto CDAs. The resulting Zoledronate-loaded materials were found to release the drug in different phosphate-containing media, with a satisfactory agreement between experimental data and the values predicted from the model.  相似文献   

10.
In organics-based (opto)electronic devices, the interface dipoles formed at the organic/metal interfaces play a key role in determining the barrier for charge (hole or electron) injection between the metal electrodes and the active organic layers. The origin of this dipole is rationalized here from the results of a joint experimental and theoretical study based on the interaction between acrylonitrile, a pi-conjugated molecule, and transition metal surfaces (Cu, Ni, and Fe). The adsorption of acrylonitrile on these surfaces is investigated experimentally by photoelectron spectroscopies, while quantum mechanical methods based on density functional theory are used to study the systems theoretically. It appears that the interface dipole formed at an organic/metal interface can be divided into two contributions: (i) the first corresponds to the "chemical" dipole induced by a partial charge transfer between the organic layers and the metal upon chemisorption of the organic molecules on the metal surface, and (ii) the second relates to the change in metal surface dipole because of the modification of the metal electron density tail that is induced by the presence of the adsorbed organic molecules. Our analysis shows that the charge injection barrier in devices can be tuned by modulating various parameters: the chemical potential of the bare metal (given by its work function), the metal surface dipole, and the ionization potential and electron affinity of the organic layer.  相似文献   

11.
以双酚A二缩水甘油醚(DGEBA)环氧树脂(Epoxy Resin,EP)为基体、甲基六氢苯酐(MHHPA)为固化剂、以多壁碳纳米管(MWCNTs)为添加剂制备了环氧树脂/碳纳米管纳米复合材料。通过对微观结构、玻璃化转变温度(Tg)、热失重、热导率和锥形量热测试结果分析,研究了质量分数少于1.5%的MWCNTs对环氧树脂的导热和阻燃性能影响,结果表明,MWCNTs质量分数为1.5%时,复合材料发生团聚;纳米复合材料随着MWCNTs质量分数的增加Tg值先增加后降低;失重5%时,对应的温度先增加后降低,残炭量增加;样品的热导率呈现先升高后降低的趋势,当MWCNTs质量分数为1%时,复合材料的热导率最大;MWCNTs加入后环氧树脂的总释热量减少,释烟量增加,阻燃性得到一定程度的提高。  相似文献   

12.
The development of an artificial heterogeneous dyad by covalently anchoring a hydrogen‐evolving molecule catalyst to a semiconductor photosensitizer through a bridging ligand is highly challenging. Herein, we adopt the inorganic–organic hybrid CdS–DETA NSs (DETA=diethylenetriamine, NSs=nanosheets) as initial matrix to successfully construct an imine bond (‐CH=N‐) linked heterogeneous dyad [CdS?N=CH?Ni] through the condensation reaction between the amino groups of CdS–DETA and the aldehyde group of the water reduction molecular catalyst, [(tpy‐CHO)2Ni]Cl2 (tpy=terpyridine). The [CdS?N=CH?Ni] enables a turnover number (TON) of about 43 815 versus Ni catalysts and an initial turnover frequency (TOF) of approximately 0.47 s?1 in 26 h under visible‐light irradiation (λ>420 nm). The apparent quantum yield (AQY) reaches (9.9±0.8) % at 420 nm. Under optical conditions, the [CdS?N=CH?Ni] can achieve a considerable amount of hydrogen production, 507.1±27 μmol H2 for 6 h, which is 1.27 times that generated from the mechanically mixed system of CdS–DETA NSs and [(tpy‐CH=NR)2Ni]Cl2 ( III ) under otherwise identical conditions. Furthermore, its TON value based on Ni species is also higher than that of the mixed system of CdS–DETA and III .  相似文献   

13.
A one-step synthesis method is described to prepare high-quality ultrafine inorganic semiconductor nanocrystals via a two-phase interface hydrolysis reaction under hydrothermal conditions. With the synthesis of ZrO2 quantum dots as an example, we show that the prepared nanocrystals have good monodispersity and high crystallinity, as well as other related superior properties, e.g., strong photoluminescence and excellent photocatalytic activities. Also the crystal size can be conveniently adjusted in the range below 10 nm through controlling the reaction temperature. Besides that, this method also shows other distinct advantages compared with other methods reported previously. First, the preparation process is simple and cheap and does not contain any complicated posttreatment procedure. Second, products (without coating) can be collected from the organic phase which effectively avoids grain aggregation induced by the capillary concentration in the water environment. Third, the production yield is very high (almost 100%) and the organic and water phases after reaction can be easily recycled for next reaction. Therefore, it provides a promising strategy for the large-scale industrial production of different kinds of high-quality inorganic nanocrystals.  相似文献   

14.
Mechanical and Thermal Properties of Organic/Inorganic Hybrid Coatings   总被引:2,自引:0,他引:2  
Two types of organic/inorganic hybrid coatings were produced by the sol-gel route from (a) 80% tetra-ethoxy-silane (TEOS) and 20% glycidoxypropyl-trimethoxy-silane (GPTMS) and (b) GPTMS with varying amounts of diethylene-triamine (DETA). Residual stress was measured from substrate curvature and modulus and hardness were studied using nano-indentation.Coatings derived from 80TEOS/20GPTMS are relatively stiff and brittle. Tensile residual stress, elastic modulus and hardness all increase as the curing temperature is increased to 350°C. The organic components are not cross-linked and act as network modifiers.Coatings derived from GPTMS/DETA are less stiff and softer. Increasing the DETA content increases both E and H by increasing the connectivity of the organic network which dominates the mechanical properties. Thermal degradation begins at about 250°C in all cases, but is retarded when the connectivity of the organic network is high.  相似文献   

15.
聚丙烯酰胺在硅胶表面上的吸附及其抑制的研究   总被引:9,自引:0,他引:9  
聚丙烯酰胺(PAM)具有强极性,对硅胶等极性固体表面具有强烈的吸附作用,陈九顺等用4%的NaCl水溶液为淋洗液和Adamson用0.1mol/L的吗啡啉水溶液为淋洗液虽能部分解决硅胶担体对PAM样品的吸附,但他们对吸附的实质问题未进行研究,PAM等高分子化合物在固体表面上的吸附问题的研究尚处于初级阶段。  相似文献   

16.
We have synthesized epoxy nanocomposites with various percents of nanoalumina by using ultrasonic dispersion treatment. Scanning calorimetry studies revealed that the composition having 1% nanoalumina results in the highest value of cross-link density as evidenced by the glass transition temperature (T g). Thermal degradation of the systems consisting of diglycidyl ether bisphenol A (DGEBA)/1,3-Poropane diamine and with 1% and without nanoalumina were studied by thermogravimetry analysis to determine the reaction mechanism in air. The obtained results indicated that a relatively low concentration of nanoalumina led to an impressive improvement of thermal stability of epoxy resin. The Coats?CRedfern, Van Krevelen, Horowitz?CMetzger, and Criado methods were utilized to find the solid state thermal degradation mechanism. Analysis of our experimental results suggests that the reaction mechanism is depending on the applied thermal history. For the nanocomposite, the mechanism was recognized to be one-dimensional diffusion (D1) reaction at low heating rates and it changes to be a random nucleation process with one nucleus on the individual particle (F1) at high heating speeds. The results also indicated that the degradation mechanism of organic phase is influenced by the presence of inorganic nanofiller.  相似文献   

17.
In this article, a serial of bi‐functionalized hollow polymer particles (BF‐HPPs), containing both carboxylate and different amide/amine groups [HPP‐NH2, HPP‐ethylenediamine (EDA), and HPP‐diethylenetriamine (DETA)], were specially designed and synthesized to investigate the effect of neighboring amino groups on their adsorption/desorption behavior. Due to the high density of carboxylate groups, these BF‐HPPs can serve as efficient adsorbents for selective removal of positively charged methylene blue (b‐MB). With increasing chain length of the neighboring amino groups, the maximum adsorption capacities (qmax) at pH 7 decrease dramatically from 606.1 mg g?1 for HPP‐NH2, to 404.9 mg g?1 for HPP‐EDA, and 332.2 mg g?1 for HPP‐DETA, due to increasing steric hindrance. Significantly, the equilibrium adsorption can be achieved within 15 min for HPP‐EDA and HPP‐DETA, while it takes more than 720 min for HPP‐NH2. Moreover, the qmax of HPP‐DETA exhibits remarkable pH‐sensitive property, which decreases sharply to 32.7 mg g?1 at pH 3 due to strong electrostatic repulsion between positively charged ammonium groups and b‐MB molecules. Accordingly, the desorption efficiency of HPP‐DETA reached up to 94% after one desorption step, which is much higher than that of HPP‐EDA (78%) and HPP‐NH2 (60%). The absorbed b‐MB can be facilely desorbed and the adsorption capacity of the regenerated HPP‐DETA keeps above 95% after five consecutive adsorption–desorption cycles. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1404–1413  相似文献   

18.
Understanding the nature of the adhesion of an organic liquid on a metal surface is of paramount importance for elucidating the stability and chemical reactivity at these complex interfaces. However, to date, the morphology, layering and chemical properties at organic liquid metal interfaces have been rarely known. Using semi-empirical dispersion corrected density functional theory calculations and ab initio molecular dynamics simulations, we show that carbon tetrachloride and ethanol films confined to a platinum surface alter their intrinsic properties and exhibit interfacial reactivity. A few interface carbon tetrachloride (ethanol) molecules adsorb dissociatively (molecularly) on platinum thanks to the surrounding medium. The adsorption strength of the interfacial molecules is consequently increased in the condensed phase as compared to the gas phase. This remarkable effect is rationalized by an interaction energy decomposition model and an electrostatic potential analysis.  相似文献   

19.
The diglycidyl ether of bisphenol A (DGEBA) was cured with either an aliphatic or an aromatic spirobislactone using a tertiary amine catalyst. The products were characterized by FTIR, TGA, DSC, dilatometry, and single-fiber adhesion measurements, and their performance was compared to that of DGEBA cured with acid anhydrides. Both aliphatic and aromatic bislactones are effective curing agents for DGEBA. FTIR and dilatometry confirm that both lactone rings open early in the curing reaction and initially offset shrinkage caused by polymerization. After the bislactone has been consumed, oxirane reactions proceed in a normal fashion. The final shrinkage of cured DGEBA polymers, with or without addition of bislactones, is 3.0–3.5%. Bislactone-modified materials possess superior thermal properties, when compared to those of anhydride-cured materials.  相似文献   

20.
The interaction between glucose oxidase (GOx) and phospholipid monolayers is studied at the 1,2-dichloroethane/water interface by electrochemical impedance spectroscopy. Electrochemical experiments show that the presence of GOx induces changes in the capacitance curves at both negative and positive potentials, which are successfully explained by a theoretical model based on the solution of the Poisson-Boltzmann equation. These changes are ascribed to a reduced partition coefficient of GOx and an increase of the permittivity of the lipid hydrocarbon domain. Our results show that the presence of lipid molecules enhances the adsorption of GOx molecules at the liquid/liquid interface. At low lipid concentrations, the adsorption of GOx is probably the first step preceding its penetration into the lipid monolayer. The experimental results indicate that GOx penetrates better and forms more stable monolayers for lipids with longer hydrophobic tails. At high GOx concentrations, the formation of multilayers is observed. The phenomenon described here is strongly dependent on 1) the GOx and lipid concentrations, 2) the nature of the lipid, and 3) the potential drop across the interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号