首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The transfer of the picrate ion across the interface between two immiscible electrolyte solutions, 0.05 M LiCl in water and 0.05 M tetrabutylammonium tetraphenylborate in nitrobenzene was investigated by electrolysis with the electrolyte dropping electrode and by cyclic voltammetry. Under the conditions of the experiments the charge-transfer process is controlled solely by diffusion. The maximum which appears on the polarogram of the picrate ion close to the limiting current can be suppressed by the addition of a surface-active substance (gelatine). The diffusion coefficients of the picrate ion in the aqueous and nitrobenzene phase were determined from the limiting polarographic current and from the peak current on the cyclic voltammogram. The value of the formal potential of the charge-transfer reaction, which was calculated from the half-wave potential or from the peak potential, is in good agreement with that inferred from the extraction data.  相似文献   

2.
The results of electrochemical studies on the reaction of tetrabutyl- and tetramethylammonium (TBA+ and TMA+) ion transfer from water to 1,2-dichloroethane are presented in this paper and are compared with se of the water—nitrobenzene interface. The TMA+ ion transfer has been studied by the chronopotentiometric cyclic voltammetry methods and that of the TBA+ ion by the chronopotentiometric method only.It has been found that the reactions are diffusion controlled over the current density range up to about 1O μA cm?2 and at polarization rates up to 0.15V s?1. Diffusion coefficients of the studied ions have been detemined, as well as their formal potentials with respect to an ion-selective tetrabutylammonium electrode to a partition electrode containing tetraethylammonium picrate whose potential is close to zero. In additon, kinetic parameters of the transfer reaction have been determined for the tetrabutylammonium ion from data obtained at current densities over 10 μA cm?2 (irreversible range).  相似文献   

3.
From fast galvanostatic pulse measurements at 25°C the capacitance of the water/nitrobenzene interface was evaluated as a function of the interfacial potential difference Δow? for systems consisting of NaBr, LiCl or MgSO4 in water and tetrabutylammonium tetraphenylborate, tetraphenylarsonium tetraphenylborate or tetraphenylarsonium dicarbollylcobaltate in nitrobenzene. The modified Verwey—Niessen model, in which an inner layer of solvent molecules separates two space-charge regions (the diffuse double layer), describes the structure of the water/nitrobenzene interface well at electrolyte concentrations above ca. 0.02 mol dm?3, provided that the ions are allowed to penetrate into the inner layer over some distance. For all the systems studied the zero-charge potential difference was found at Δwo?pzc ≈ 0 on the basis of the standard potential difference Δwo?0TMA + = 0.035 V for tetramethylammonium cation which was used as a reference ion. At zero surface charge a comparison was made with the theoretical capacitance calculated using the mean spherical approximation for a model consisting of two ion and dipole mixtures facing each other. The effect of ion penetration on the interfacial capacitance was estimated from the solution of the linearized Poisson-Boltzmann equation for a triple dielectric model with a continuous distribution of the point ions. The concentration-independent inner layer potential difference and capacitance can only be inferred from the capacitance data if the ion size effect is taken into account. A non-iterative procedure based on the hypernetted-chain equation was used for the evaluation of the potential drop across the diffuse double layer. The extend of the penetration into the inner layer appears to be a function of ion solvation, e.g. the more hydrated ion the less extensive ion penetration is likely.  相似文献   

4.
The equation of the potential-current curve for the ion transfer across the liquid/liquid interface during the linear current scanning has been derived theoretically. A method to calculate the kinetics parameters for the ion transfer by the way of linear current scanning is presented. The transfer of TPAs~+ ions, which is a typical basic electrolyte ion usually used in liquld/liquid interface electrochemistry, was practically investigated at the water/nitrobenzene interface.  相似文献   

5.
The concentration polarization phenomena in ion exchange membrane electrodialysis have been studied with single exchange membrane cell. The limiting current densities of Asahi ion-permselective membranes CK-1 and CK-2, Selemion ion-exchange membranes CMV, AMV, DMV and ASV have been measured with Ag-AgCl reversible electrode in various electrolyte solutions under 25°C and constant flow rate. In sodium chloride solution, the cation exchange membrane is easier to occur concentration polarization than the anion exchange membrane. The limiting current density increases as the concentration of solution increases for the same kind of ion exchange membrane. The experimental limiting current densities of Selemion CMV and AMV in NaCl, KCl, MgCl2, CaCl2, BaCl2, Na2SO4, NaOH and HCl aqueous solutions are measured. The results show that the limiting current density increases as the ion mobility and diffusivity increase, and is affected by the transference number of ion. For the mixture of electrolyte solution, there are linear relationship between limiting current density and equivalent fraction of electrolytes.  相似文献   

6.
The kinetics of the transfer of a series of hydrophilic monovalent anions across the water/nitrobenzene (W/NB) interface has been studied by means of thin organic film-modified electrodes in combination with electrochemical impedance spectroscopy and square-wave voltammetry. The studied ions are Cl-, Br-, I-, ClO4-, NO3-, SCN-, and CH3COO-. The electrode assembly comprises a graphite electrode (GE) covered with a thin NB film containing a neutral strongly hydrophobic redox probe (decamethylferrocene or lutetium bis(tetra-tert-butylphthalocyaninato)) and an organic supporting electrolyte. The modified electrode is immersed in an aqueous solution containing a supporting electrolyte and transferring ions, and used in a conventional three-electrode configuration. Upon oxidation of the redox probe, the overall electrochemical process proceeds as an electron-ion charge-transfer reaction coupling the electron transfer at the GE/NB interface and compensates ion transfer across the W/NB interface. The rate of the ion transfer across the W/NB interface is the limiting step in the kinetics of the overall coupled electron-ion transfer reaction. Moreover, the transferring ion that is initially present in the aqueous phase only at a concentration lower than the redox probe, controls the mass transfer regime in the overall reaction. A rate equation describing the kinetics of the ion transfer that is valid for the conditions at thin organic film-modified electrodes is derived. Kinetic data measured with two electrochemical techniques are in very good agreement.  相似文献   

7.
The transfer on phenylpropanolamine ion, PPAH+, has been studied at the Interface between Two Immiscible Solutions (ITIES). The polarizable potential range was determined by cyclic voltammetry at the interface between an aqueous solution of lithium chloride (LiCl) and a nitrobenzene (NB) solution of electrolyte tetrabutylammonium tetraphenylborate (TBATPB). The half‐wave potential of ion transfer for phenylpropanolamine accross the water|NB interface was found 465.3 mV. The peak separation, the diffusion coefficient, and the standard ion transfer potential of PPAH+ were observed to be 59.1 mV, 1.7 × 10?6 cm2/s, and 104.6 mV, respectively. The temperature of experiment was kept constantly at 25 ± 1 °C using water flow thermostate.  相似文献   

8.
金属离子在载体作用下在水/有机相界面的传输机制各异,Koryta、Freiser和Senda等人通过研究分别提出了EC、CE及E机制。本文用循环伏安法(CV)对2.2′-联吡啶在水/硝基苯界面电萃取Ni(Ⅱ)的过程进行了研究,结果表明不同条件下萃取过程分别为C_wEC_0,C_wE和C_0E机制。  相似文献   

9.
The effect of H2O in electrolytes and in electrode lattices on the thermodynamics and kinetics of reversible multivalent‐ion intercalation chemistry based on a model platform of layered VOPO4 has been investigated. The presence of H2O at the electrolyte/electrode interface plays a key role in assisting Zn2+ diffusion from electrolyte to the surface, while H2O in the lattice structure alters the working potential. More importantly, a dynamic equilibrium between bulk electrode and electrolyte is eventually reached for H2O transport during the charge/discharge cycles, with the water activity serving as the key parameter determining the direction of water movement and the cycling stability.  相似文献   

10.
In the temperature range 873–1123 K, transport numbers of oxygen ions and protons are determined in the system (H2 + H2O), Me/BaCe0.9Nd0.1O3-α/Me,(H2 + H2O), where Me = Ag, Au, Pt, Ni, by the emf and current methods. The determined transport numbers are independent of the determination method, the electrode material, the current direction (anodic and cathodic polarization of the electrode), polarizability of electrodes, and the partial water (hydrogen) pressure in the gas phase. This unambiguously suggests that the transport numbers refer to the solid electrolyte, and not the electrochemical system as a whole. It also follows that partial currents of the hydrogen ionization and the oxygen ion discharge are determined by the transport numbers of protons and oxygen ions in the electrolyte. At a constant temperature, their ratio is affected by neither the electrode potential nor the gas phase composition, i.e., both electrode reactions have a common limiting step (or steps). Deceased.  相似文献   

11.
The redox properties of lutetium bis(tetra-tert-butylphthalocyaninato) (LBPC) have been studied in nitrobenzene that is deposited as a microfilm on the surface of highly oriented pyrolytic graphite electrodes. The behavior of the modified electrode, which is immersed in an aqueous electrolyte solution, is typical for the three-phase electrode (Scholz, F.; Komorsky-Lovri?, S.; Lovri?, M. Electrochem. Comm. 2000, 2, 112-118). LBPC can be both oxidized and reduced in one electron reversible processes. The oxidation and the reduction of LBPC at the graphite/nitrobenzene interface is accompanied by the transfer of anion or cation, respectively, from the aqueous phase into the organic layer. Thus, using LBPC as a redox probe for the three-phase electrode, the transfer of both anions and cations across the water/nitrobenzene interface can be studied in a single experiment. The hydrophobicity of LBPC is so high that it enables inspection of cations and anions with Delta (nb)(w) (G)(theta)(Cat+) < or = 43 kJ/mol and Delta (nb)(w) (G)(theta)(X-) < or = 50 kJ/mol, respectively. The direct transfer of Na(+) and Li(+) from water to nitrobenzene, mutually saturated, is achieved for the first time at a macroscopic water/nitrobenzene interface.  相似文献   

12.
A novel electrochemical method based on controlled-potential electrolysis has been developed for the elucidation of the ion transfer at the interface between two immiscible electrolyte solutions (ITIES). A relationship between the applied interfacial potential (Eapp) and the amount of the ion transferred (Atr) was investigated after an electrolytic equilibrium was attained by controlled-potential electrolysis. The Atr was determined chemically or radiometrically instead of by current measurement. It was found that (i) controlled-potential electrolysis was applicable to the study of the transfer of such hydrophilic ions as transition metal ions which gave no appreciable current within the potential window in voltammetry or polarography at ITIES, (ii) controlled-potential electrolysis in combination with a sensitive analytical method enabled a study of the transfer reaction of an ion of very dilute concentration, and (iii) even when the transfer reaction of an ion was irreversible or quasi-reversible, a standard ion transfer potential could be determined by controlled-potential electrolysis without using a kinetic parameter. The controlled-potential electrolysis method developed was applied to the transfer reactions of actinide ions such as UO2 2+ and Am3+ from aqueous solution to nitrobenzene solution in the absence or presence of an ionophore facilitating the transfer. The Gibbs energy for the transfer of actinide ion and a stability constant of the complex between an actinide ion and the ionophore in nitrobenzene solution were determined from log D versus Eapp plots (D the ratio of the concentration of the ion in nitrobenzene solution to that in aqueous solution). The feasibility of controlled-potential electrolysis as a method for electrolytic separation of actinide ions is discussed.  相似文献   

13.
Photovoltaic conversion has been achieved by use of chloroplasts (photosynthetic organs) from spinach adsorbed on a nanocrystalline TiO2 film on an indium tin oxide (ITO) glass electrode (chloroplast/TiO2 electrode). The shape of the absorption spectrum of the chloroplast/TiO2 electrode is almost the same that of a dispersion of the chloroplasts. Absorption maxima of the chloroplast/TiO2 electrode observed at 430, 475, and 670 nm were attributed to carotenoid and chlorophyll molecules, suggesting that chloroplasts have been adsorbed by the nanocrystalline TiO2 film on the ITO electrode. The photocurrent responses of chloroplast/TiO2 electrodes were measured by using a solution of 0.1 M tetrabutylammonium hexafluorophosphate in acetonitrile as redox electrolyte in the presence or absence of water and 100 mW cm?2 irradiation. The photocurrent of the chloroplast/TiO2 electrode was increased by adding water to the redox electrolyte. The photocurrent responses of chloroplast/TiO2 electrodes irradiated with monochromatic light (680 nm, the absorption band of photosystem II complexed with evolved oxygen) were measured by use of a solution of 0.1 M tetrabutylammonium hexafluorophosphate in acetonitrile as redox electrolyte in the presence or absence of water. A chloroplast/TiO2 electrode photocurrent was observed only when the redox electrolyte containing water was used, indicating that the oxygen evolved from water by photosystem II in chloroplasts adsorbed by a nanocrystalline TiO2 film on an ITO electrode irradiated at 680 nm is reduced to water by the catalytic activity of the platinum electrode. The maximum incident photon-to-current conversion efficiency (IPCE) was 0.8 % on irradiation at 670 nm.  相似文献   

14.
In the theoretical model it is assumed that a graphite disk electrode is covered by a thin film of the solution of decamethylferrocene and some supporting electrolyte in nitrobenzene and immersed in an aqueous solution of the same electrolyte. Oxidation of decamethylferrocene is accompanied by the transfer of anions of the electrolyte from water into nitrobenzene. The flux of decamethylferrocenium cations at the electrode surface and the flux of anions at the liquid/liquid interface are separated by the thickness of the film, but the electroneutrality is ensured by the migration of ionic species through the film. Theoretical concentration profiles of ionic species in the film are reported for cyclic voltammetry.  相似文献   

15.
The classical treatment of the double layer has been extended to the interface between two immiscible solutions. The model presented is composed of an inner compact layer, characterized by a dipolar potential drop, between two diffuse type layers. The systems studied are composed of C2 to C5 quaternary ammonium bromides at partition equilibrium between water and nitrobenzene for which the inner potential difference, for a given electrolyte, is independent, at least in the lower concentration range, of the concentration. Drop weight interfacial measurements and the use of the Gouy-Chapman approach show that the tetraethyl-, tetrapropyl- and tetrabutylammonium ions are not adsorbed within the inner compact layer, and the dipolar potential drop of this layer can then be determined. Tetrapentylammonium ions on the contrary are specifically adsorbed but the amount of adsorbed ions within the compact inner layer cannot be evaluated because of the impossibility, in this case, of determining the dipolar potential drop.  相似文献   

16.
The redox reaction between -ascorbic acid in water and chloranil in nitrobenzene has been studied by means of polarography with an ascending water electrode as well as cyclic voltammetry with a stationary interface. Through accurate measurement of the limiting currents, it has been suggested that the redox reaction should be a two-electron reaction rather than a one-electron reaction described previously. A spectrophotometric technique has also been used to observe that the redox reaction proceeds spontaneously under certain conditions even without electrochemical control. Based on these findings, it has been concluded that the present heterogeneous charge transfer reaction is the ion transfer of chloranil semiquinone radical, which is driven by the homogeneous electron transfer between ascorbic acid and chloranil in the aqueous phase.  相似文献   

17.
循环伏安法研究表明2,2′-联吡啶催化Co(Ⅱ)通过水/硝基苯界面的相转移伴有化学反应发生。水相或有机相的伴随化学反应直接影响Co(Ⅱ)与2,2′-联吡啶逐级配合物的相转移的循环伏安行为,并观察到类似于金属电极/电解质溶液界面出现的不可逆渡,不同的配合物,相转移机制不同。  相似文献   

18.
The transfer of polyammonium ions, poly[(dimethylimino)-1,6-hexanediyl] (n = 140, n being the degree of polymerization) ion and poly[(dimethylimino)(2-oxo-1,2-ethanediyl)imino-alpha,omega-alkanediylimino(1-oxo-1,2-ethanediyl)(dimethylimino)-alpha',omega'-alkanediyl] ([-N+ (CH3)2CH2CONH(CH2)x NHCOCH2N+ (CH3)2(CH2)y-]n, x = 2, 3, 4, or 6, y = 3 or 6, and n = 30-130) ions, at a polarizable nitrobenzene / water interface has been studied by normal pulse voltammetry and cyclic voltammetry. Despite the polydispersity of the preparations, by normal pulse voltammetry, an S-shaped current-potential curve with a well-defined limiting current, and, by cyclic voltammetry, a pair of anodic and cathodic peak currents due to the transfer of polyammonium ions across the interface were observed within the potential window. The voltammetric behavior is described. Also, the effect of ion-pair formation of the polyammonium ions with supporting electrolyte anions in nitrobenzene- and water-phases on the half-wave or midpoint potential of the ion-transfer, and the relation between the structure of the polyammonium ions and the transfer potentials are discussed.  相似文献   

19.
The active molybdenum sulfide compound Mo2S3, which should be considered as a cathode material for thin-layer rechargeable power source, has been produced by electrolysis. Using impedance spectroscopy and potential relaxation method after current interruption, the kinetic parameters of lithium intercalation in electrolytic Mo2S3 have been obtained. Activation energy of Li+ migration in electrolyte (13.76 kJ/mol), charge transfer through the Mo2S3 electrode/electrolyte interface (38.8 kJ/mol), and Li+ diffusion in a solid phase (57.3 kJ/mol) have also been established. Taking into account the coefficient data of charge mass transfer in a solid phase and the reaction rate coefficient of charge transfer through the interface electrode/electrolyte within the temperature range 20–50 °C, the stage of Li+ transfer in a solid phase has been determined as a limiting stage for lithium intercalation in electrolytic molybdenum sulfide Mo2S3.  相似文献   

20.
A new approach to micropatterning is demonstrated. The approach is based on driving an electrochemical process at the solid-liquid interface through the formation of a flux of ions from a micropipet that is held in close proximity to the surface. The flux of ions is generated by the so-called potential assisted ion transfer at the interface between two immiscible electrolyte solutions (ITIES). As a model system, the local deposition of silver was examined. Specifically, a constant potential, which was applied to a micropipet filled with an aqueous solution of silver ions, caused the transfer of Ag(+) into the outer nitrobenzene (NB) solution that consisted of an electrolyte, tetrabutylammonium tetrakis[4-chlorophenyl]borate (TBATPBCl). To facilitate the transfer of silver ions a macrocyclic ligand, that is, dibenzo-24-crown-8 (DB24C8), was added to the organic phase. The Faradaic current of this micro-ITIES was used as a means of controlling the tip-surface distance in scanning electrochemical microscopy (SECM) and depositing silver microstructures on a gold substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号