首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
In this paper we are concerned with the family \(\widetilde{S}^t_A(\mathbb {B}^n)\) (\(t\ge 0\)) of normalized biholomorphic mappings on the Euclidean unit ball \(\mathbb {B}^n\) in \({\mathbb {C}}^n\) that can be embedded in normal Loewner chains whose normalizations are given by time-dependent operators \(A\in \widetilde{\mathcal {A}}\), where \(\widetilde{\mathcal {A}}\) is a family of measurable mappings from \([0,\infty )\) into \(L({\mathbb {C}}^n)\) which satisfy certain natural assumptions. In particular, we consider extreme points and support points associated with the compact family \(\widetilde{S}^t_A(\mathbb {B}^n)\), where \(A\in \widetilde{\mathcal {A}}\). We prove that if \(f(z,t)=V(t)^{-1}z+\cdots \) is a normal Loewner chain such that \(V(s)f(\cdot ,s)\in \mathrm{ex}\,\widetilde{S}^s_A(\mathbb {B}^n)\) (resp. \(V(s)f(\cdot ,s)\in \mathrm{supp}\,\widetilde{S}^s_A(\mathbb {B}^n)\)), then \(V(t)f(\cdot ,t)\in \mathrm{ex}\, \widetilde{S}^t_A(\mathbb {B}^n)\), for all \(t\ge s\) (resp. \(V(t)f(\cdot ,t)\in \mathrm{supp}\,\widetilde{S}^t_A(\mathbb {B}^n)\), for all \(t\ge s\)), where V(t) is the unique solution on \([0,\infty )\) of the initial value problem: \(\frac{d V}{d t}(t)=-A(t)V(t)\), a.e. \(t\ge 0\), \(V(0)=I_n\). Also, we obtain an example of a bounded support point for the family \(\widetilde{S}_A^t(\mathbb {B}^2)\), where \(A\in \widetilde{\mathcal {A}}\) is a certain time-dependent operator. We also consider the notion of a reachable family with respect to time-dependent linear operators \(A\in \widetilde{\mathcal {A}}\), and obtain characterizations of extreme/support points associated with these families of bounded biholomorphic mappings on \(\mathbb {B}^n\). Useful examples and applications yield that the study of the family \(\widetilde{S}^t_A(\mathbb {B}^n)\) for time-dependent operators \(A\in \widetilde{\mathcal {A}}\) is basically different from that in the case of constant time-dependent linear operators.  相似文献   

3.
If \(\rho \) denotes a finite-dimensional complex representation of \(\mathbf {SL}_{2}(\mathbf {Z})\), then it is known that the module \(M(\rho )\) of vector-valued modular forms for \(\rho \) is free and of finite rank over the ring M of scalar modular forms of level one. This paper initiates a general study of the structure of \(M(\rho )\). Among our results are absolute upper and lower bounds, depending only on the dimension of \(\rho \), on the weights of generators for \(M(\rho )\), as well as upper bounds on the multiplicities of weights of generators of \(M(\rho )\). We provide evidence, both computational and theoretical, that a stronger three-term multiplicity bound might hold. An important step in establishing the multiplicity bounds is to show that there exists a free basis for \(M(\rho )\) in which the matrix of the modular derivative operator does not contain any copies of the Eisenstein series \(E_6\) of weight six.  相似文献   

4.
Let A be a 0-sectorial operator with a bounded \(H^\infty (\Sigma _\sigma )\)-calculus for some \(\sigma \in (0,\pi ),\) e.g. a Laplace type operator on \(L^p(\Omega ),\, 1< p < \infty ,\) where \(\Omega \) is a manifold or a graph. We show that A has a \(\mathcal {H}^\alpha _2(\mathbb {R}_+)\) Hörmander functional calculus if and only if certain operator families derived from the resolvent \((\lambda - A)^{-1},\) the semigroup \(e^{-zA},\) the wave operators \(e^{itA}\) or the imaginary powers \(A^{it}\) of A are R-bounded in an \(L^2\)-averaged sense. If X is an \(L^p(\Omega )\) space with \(1 \le p < \infty \), R-boundedness reduces to well-known estimates of square sums.  相似文献   

5.
The first main theorem of this paper asserts that any \((\sigma , \tau )\)-derivation d, under certain conditions, either is a \(\sigma \)-derivation or is a scalar multiple of (\(\sigma - \tau \)), i.e. \(d = \lambda (\sigma - \tau )\) for some \(\lambda \in \mathbb {C} \backslash \{0\}\). By using this characterization, we achieve a result concerning the automatic continuity of \((\sigma , \tau \))-derivations on Banach algebras which reads as follows. Let \(\mathcal {A}\) be a unital, commutative, semi-simple Banach algebra, and let \(\sigma , \tau : \mathcal {A} \rightarrow \mathcal {A}\) be two distinct endomorphisms such that \(\varphi \sigma (\mathbf e )\) and \(\varphi \tau (\mathbf e )\) are non-zero complex numbers for all \(\varphi \in \Phi _\mathcal {A}\). If \(d : \mathcal {A} \rightarrow \mathcal {A}\) is a \((\sigma , \tau )\)-derivation such that \(\varphi d\) is a non-zero linear functional for every \(\varphi \in \Phi _\mathcal {A}\), then d is automatically continuous. As another objective of this research, we prove that if \(\mathfrak {M}\) is a commutative von Neumann algebra and \(\sigma :\mathfrak {M} \rightarrow \mathfrak {M}\) is an endomorphism, then every Jordan \(\sigma \)-derivation \(d:\mathfrak {M} \rightarrow \mathfrak {M}\) is identically zero.  相似文献   

6.
We show that for a locally \(\sigma \)-finite measure \(\mu \) defined on a \(\delta \)-ring, the associate space theory can be developed as in the \(\sigma \)-finite case, and corresponding properties are obtained. Given a saturated \(\sigma \)-order continuous \(\mu \)-Banach function space E, we prove that its dual space can be identified with the associate space \(E ^\times \) if, and only if, \(E^\times \) has the Fatou property. Applying the theory to the spaces \(L^p (\nu )\) and \(L_w^p (\nu )\), where \(\nu \) is a vector measure defined on a \(\delta \)-ring \(\mathcal {R}\) and \(1 \le p < \infty \), we establish results corresponding to those of the case when the vector measure is defined on a \(\sigma \)-algebra.  相似文献   

7.
A bounded linear operator T acting on a Hilbert space is said to have orthogonality property \(\mathcal {O}\) if the subspaces \(\ker (T-\alpha )\) and \(\ker (T-\beta )\) are orthogonal for all \(\alpha , \beta \in \sigma _p(T)\) with \(\alpha \ne \beta \). In this paper, the authors investigate the compact perturbations of operators with orthogonality property \(\mathcal {O}\). We give a sufficient and necessary condition to determine when an operator T has the following property: for each \(\varepsilon >0\), there exists \(K\in \mathcal {K(H)}\) with \(\Vert K\Vert <\varepsilon \) such that \(T+K\) has orthogonality property \(\mathcal {O}\). Also, we study the stability of orthogonality property \(\mathcal {O}\) under small compact perturbations and analytic functional calculus.  相似文献   

8.
For \(p\in [1,\infty ]\), we establish criteria for the one-sided invertibility of binomial discrete difference operators \({{\mathcal {A}}}=aI-bV\) on the space \(l^p=l^p(\mathbb {Z})\), where \(a,b\in l^\infty \), I is the identity operator and the isometric shift operator V is given on functions \(f\in l^p\) by \((Vf)(n)=f(n+1)\) for all \(n\in \mathbb {Z}\). Applying these criteria, we obtain criteria for the one-sided invertibility of binomial functional operators \(A=aI-bU_\alpha \) on the Lebesgue space \(L^p(\mathbb {R}_+)\) for every \(p\in [1,\infty ]\), where \(a,b\in L^\infty (\mathbb {R}_+)\), \(\alpha \) is an orientation-preserving bi-Lipschitz homeomorphism of \([0,+\infty ]\) onto itself with only two fixed points 0 and \(\infty \), and \(U_\alpha \) is the isometric weighted shift operator on \(L^p(\mathbb {R}_+)\) given by \(U_\alpha f= (\alpha ^\prime )^{1/p}(f\circ \alpha )\). Applications of binomial discrete operators to interpolation theory are given.  相似文献   

9.
In this paper, we consider the Fischer–Marsden conjecture within the frame-work of K-contact manifolds and \((\kappa ,\mu )\)-contact manifolds. First, we prove that a complete K-contact metric satisfying \(\mathcal {L}^{*}_g(\lambda )=0\) is Einstein and is isometric to a unit sphere \(S^{2n+1}\). Next, we prove that if a non-Sasakian \((\kappa ,\mu )\)-contact metric satisfies \(\mathcal {L}^{*}_g(\lambda )=0\), then \( M^{3} \) is flat, and for \(n > 1\), \(M^{2n+1}\) is locally isometric to the product of a Euclidean space \(E^{n+1}\) and a sphere \(S^n(4)\) of constant curvature \(+\,4\).  相似文献   

10.
An n-normal operator may be defined as an \(n \times n\) operator matrix with entries that are mutually commuting normal operators and an operator \(T \in \mathcal {B(H)}\) is quasi-nM-hyponormal (for \(n \in \mathbb {N}\)) if it is unitarily equivalent to an \(n \times n\) upper triangular operator matrix \((T_{ij})\) acting on \(\mathcal {K}^{(n)}\), where \(\mathcal {K}\) is a separable complex Hilbert space and the diagonal entries \(T_{jj}\) \((j = 1,2,\ldots , n)\) are M-hyponormal operators in \(\mathcal {B(K)}\). This is an extended notion of n-normal operators. We prove a necessary and sufficient condition for an \(n \times n\) triangular operator matrix to have Bishop’s property \((\beta )\). This leads us to study the hyperinvariant subspace problem for an \(n \times n\) triangular operator matrix.  相似文献   

11.
12.
Let \(\mathcal Lf(x)=-\Delta f (x)+V(x)f(x)\), V?≥?0, \(V\in L^1_{loc}(\mathbb R^d)\), be a non-negative self-adjoint Schrödinger operator on \(\mathbb R^d\). We say that an L 1-function f is an element of the Hardy space \(H^1_{\mathcal L}\) if the maximal function
$ \mathcal M_{\mathcal L} f(x)=\sup\limits_{t>0}|e^{-t\mathcal L} f(x)| $
belongs to \(L^1(\mathbb R^d)\). We prove that under certain assumptions on V the space \(H^1_{\mathcal L}\) is also characterized by the Riesz transforms \(R_j=\frac{\partial}{\partial x_j}\mathcal L^{-1\slash 2}\), j?=?1,...,d, associated with \(\mathcal L\). As an example of such a potential V one can take any V?≥?0, \(V\in L^1_{loc}\), in one dimension.
  相似文献   

13.
Fix sets X and Y, and write \(\mathcal P\mathcal T_{XY}\) for the set of all partial functions \(X\rightarrow Y\). Fix a partial function \({a:Y\rightarrow X}\), and define the operation \(\star _a\) on \(\mathcal P\mathcal T_{XY}\) by \(f\star _ag=fag\) for \(f,g\in \mathcal P\mathcal T_{XY}\). The sandwich semigroup \((\mathcal P\mathcal T_{XY},\star _a)\) is denoted \(\mathcal P\mathcal T_{XY}^a\). We apply general results from Part I to thoroughly describe the structural and combinatorial properties of \(\mathcal P\mathcal T_{XY}^a\), as well as its regular and idempotent-generated subsemigroups, \({\text {Reg}}(\mathcal P\mathcal T_{XY}^a)\) and \(\mathbb E(\mathcal P\mathcal T_{XY}^a)\). After describing regularity, stability and Green’s relations and preorders, we exhibit \({\text {Reg}}(\mathcal P\mathcal T_{XY}^a)\) as a pullback product of certain regular subsemigroups of the (non-sandwich) partial transformation semigroups \(\mathcal P\mathcal T_X\) and \(\mathcal P\mathcal T_Y\), and as a kind of “inflation” of \(\mathcal P\mathcal T_A\), where A is the image of the sandwich element a. We also calculate the rank (minimal size of a generating set) and, where appropriate, the idempotent rank (minimal size of an idempotent generating set) of \(\mathcal P\mathcal T_{XY}^a\)\({\text {Reg}}(\mathcal P\mathcal T_{XY}^a)\) and \(\mathbb E(\mathcal P\mathcal T_{XY}^a)\). The same program is also carried out for sandwich semigroups of totally defined functions and for injective partial functions. Several corollaries are obtained for various (non-sandwich) semigroups of (partial) transformations with restricted image, domain and/or kernel.  相似文献   

14.
We continue the study of stability of solving the interior problem of tomography. The starting point is the Gelfand–Graev formula, which converts the tomographic data into the finite Hilbert transform (FHT) of an unknown function f along a collection of lines. Pick one such line, call it the x-axis, and assume that the function to be reconstructed depends on a one-dimensional argument by restricting f to the x-axis. Let \(I_1\) be the interval where f is supported, and \(I_2\) be the interval where the Hilbert transform of f can be computed using the Gelfand–Graev formula. The equation to be solved is \(\left. {\mathcal {H}}_1 f=g\right| _{I_2}\), where \({\mathcal {H}}_1\) is the FHT that integrates over \(I_1\) and gives the result on \(I_2\), i.e. \({\mathcal {H}}_1: L^2(I_1)\rightarrow L^2(I_2)\). In the case of complete data, \(I_1\subset I_2\), and the classical FHT inversion formula reconstructs f in a stable fashion. In the case of interior problem (i.e., when the tomographic data are truncated), \(I_1\) is no longer a subset of \(I_2\), and the inversion problems becomes severely unstable. By using a differential operator L that commutes with \({\mathcal {H}}_1\), one can obtain the singular value decomposition of \({\mathcal {H}}_1\). Then the rate of decay of singular values of \({\mathcal {H}}_1\) is the measure of instability of finding f. Depending on the available tomographic data, different relative positions of the intervals \(I_{1,2}\) are possible. The cases when \(I_1\) and \(I_2\) are at a positive distance from each other or when they overlap have been investigated already. It was shown that in both cases the spectrum of the operator \({\mathcal {H}}_1^*{\mathcal {H}}_1\) is discrete, and the asymptotics of its eigenvalues \(\sigma _n\) as \(n\rightarrow \infty \) has been obtained. In this paper we consider the case when the intervals \(I_1=(a_1,0)\) and \(I_2=(0,a_2)\) are adjacent. Here \(a_1 < 0 < a_2\). Using recent developments in the Titchmarsh–Weyl theory, we show that the operator L corresponding to two touching intervals has only continuous spectrum and obtain two isometric transformations \(U_1\), \(U_2\), such that \(U_2{\mathcal {H}}_1 U_1^*\) is the multiplication operator with the function \(\sigma (\lambda )\), \(\lambda \ge (a_1^2+a_2^2)/8\). Here \(\lambda \) is the spectral parameter. Then we show that \(\sigma (\lambda )\rightarrow 0\) as \(\lambda \rightarrow \infty \) exponentially fast. This implies that the problem of finding f is severely ill-posed. We also obtain the leading asymptotic behavior of the kernels involved in the integral operators \(U_1\), \(U_2\) as \(\lambda \rightarrow \infty \). When the intervals are symmetric, i.e. \(-a_1=a_2\), the operators \(U_1\), \(U_2\) are obtained explicitly in terms of hypergeometric functions.  相似文献   

15.
Let \(G={\mathcal{A}ut(\mathcal{T})}\) be the group of all automorphisms of a homogeneous tree \(\mathcal{T}\) of degree q?+?1?≥?3 and (X, m) a compact metrizable measure space with a probability measure m. We assume that μ has no atoms. The group \(\mathcal{G}={\mathcal{A}ut(\mathcal{T})}^X=G^X\) of bounded measurable currents is the completion of the group of step functions \(f:X\to{\mathcal{A}ut(\mathcal{T})}\) with respect to a suitable metric. Continuos functions form a dense subgroup of \(\mathcal{G}\). Following the ideas of I.M. Gelfand, M.I. Graev and A.M. Vershik we shall construct an irreducible family of representations of \(\mathcal{G}\). The existence of such representations depends deeply from the nonvanisching of the first cohomology group \(H^1({\mathcal{A}ut(\mathcal{T})},\pi)\) for a suitable infinite dimensional π.  相似文献   

16.
Let \(1\le p\le q<\infty \) and let X be a p-convex Banach function space over a \(\sigma \)-finite measure \(\mu \). We combine the structure of the spaces \(L^p(\mu )\) and \(L^q(\xi )\) for constructing the new space \(S_{X_p}^{\,q}(\xi )\), where \(\xi \) is a probability Radon measure on a certain compact set associated to X. We show some of its properties, and the relevant fact that every q-summing operator T defined on X can be continuously (strongly) extended to \(S_{X_p}^{\,q}(\xi )\). Our arguments lead to a mixture of the Pietsch and Maurey-Rosenthal factorization theorems, which provided the known (strong) factorizations for q-summing operators through \(L^q\)-spaces when \(1 \le q \le p\). Thus, our result completes the picture, showing what happens in the complementary case \(1\le p\le q\).  相似文献   

17.
In most classical holomorphic function spaces on the unit disk in which the polynomials are dense, a function f can be approximated in norm by its dilates \(f_r(z):=f(rz)~(r<1)\). We show that this is not the case for the de Branges–Rovnyak spaces \(\mathcal{H}(b)\). More precisely, we exhibit a space \(\mathcal{H}(b)\) in which the polynomials are dense and a function \(f\in \mathcal{H}(b)\) such that \(\lim _{r\rightarrow 1^-}\Vert f_r\Vert _{\mathcal{H}(b)}=\infty \). On the positive side, we prove the following approximation theorem for Toeplitz operators on general de Branges–Rovnyak spaces \(\mathcal{H}(b)\). If \((h_n)\) is a sequence in \(H^\infty \) such that \(\Vert h_n\Vert _{H^\infty }\le 1\) and \(h_n(0)\rightarrow 1\), then \(\Vert T_{\overline{h}_n}f-f\Vert _{\mathcal{H}(b)}\rightarrow 0\) for all \(f\in \mathcal{H}(b)\). Using this result, we give the first constructive proof that, if b is a nonextreme point of the unit ball of \(H^\infty \), then the polynomials are dense in \(\mathcal{H}(b)\).  相似文献   

18.
We continue the study of spherically balanced Hilbert spaces initiated in the first part of this paper. Recall that the complex Hilbert space \(H^2(\beta )\) of formal power series in the variables \(z_1, \ldots , z_m\) is spherically balanced if and only if there exist a Reinhardt measure \(\mu \) supported on the unit sphere \(\partial {\mathbb {B}}\) and a Hilbert space \(H^2(\gamma )\) of formal power series in the variable \(t\) such that
$$\begin{aligned} \Vert f\Vert ^2_{H^2(\beta )} = \int _{\partial {\mathbb {B}}}\Vert {f_z}\Vert ^2_{H^2(\gamma )}~d\mu (z)~(f \in H^2(\beta )), \end{aligned}$$
where \(f_z(t)=f(t z)\) is a formal power series in the variable \(t\). In the first half of this paper, we discuss operator theory in spherically balanced Hilbert spaces. The first main result in this part describes quasi-similarity orbit of multiplication tuple \(M_z\) on a spherically balanced space \(H^2(\beta ).\) We also observe that all spherical contractive multi-shifts on spherically balanced spaces admit the classical von Neumann’s inequality. In the second half, we introduce and study a class of Hilbert spaces, to be referred to as \({\mathcal {G}}\)-balanced Hilbert spaces, where \({\mathcal {G}}={\mathcal {U}}(r_1) \times {\mathcal {U}}(r_2) \times \cdots \times {\mathcal {U}}(r_k)\) is a subgroup of \({\mathcal {U}}(m)\) with \(r_1 + \cdots + r_k=m.\) In the case in which \({\mathcal {G}}={\mathcal {U}}(m),\) \({\mathcal {G}}\)-balanced spaces are precisely spherically balanced Hilbert spaces.
  相似文献   

19.
Extended dynamic mode decomposition (EDMD) (Williams et al. in J Nonlinear Sci 25(6):1307–1346, 2015) is an algorithm that approximates the action of the Koopman operator on an N-dimensional subspace of the space of observables by sampling at M points in the state space. Assuming that the samples are drawn either independently or ergodically from some measure \(\mu \), it was shown in Klus et al. (J Comput Dyn 3(1):51–79, 2016) that, in the limit as \(M\rightarrow \infty \), the EDMD operator \(\mathcal {K}_{N,M}\) converges to \(\mathcal {K}_N\), where \(\mathcal {K}_N\) is the \(L_2(\mu )\)-orthogonal projection of the action of the Koopman operator on the finite-dimensional subspace of observables. We show that, as \(N \rightarrow \infty \), the operator \(\mathcal {K}_N\) converges in the strong operator topology to the Koopman operator. This in particular implies convergence of the predictions of future values of a given observable over any finite time horizon, a fact important for practical applications such as forecasting, estimation and control. In addition, we show that accumulation points of the spectra of \(\mathcal {K}_N\) correspond to the eigenvalues of the Koopman operator with the associated eigenfunctions converging weakly to an eigenfunction of the Koopman operator, provided that the weak limit of the eigenfunctions is nonzero. As a by-product, we propose an analytic version of the EDMD algorithm which, under some assumptions, allows one to construct \(\mathcal {K}_N\) directly, without the use of sampling. Finally, under additional assumptions, we analyze convergence of \(\mathcal {K}_{N,N}\) (i.e., \(M=N\)), proving convergence, along a subsequence, to weak eigenfunctions (or eigendistributions) related to the eigenmeasures of the Perron–Frobenius operator. No assumptions on the observables belonging to a finite-dimensional invariant subspace of the Koopman operator are required throughout.  相似文献   

20.
We provide conditions for a linear map of the form \(C_{R,T}(S)=RST\) to be q-frequently hypercyclic on algebras of operators on separable Banach spaces. In particular, if R is a bounded operator satisfying the q-frequent hypercyclicity criterion, then the map \(C_{R}(S)=RSR^*\) is shown to be q-frequently hypercyclic on the space \(\mathcal {K}(H)\) of all compact operators and the real topological vector space \(\mathcal {S}(H)\) of all self-adjoint operators on a separable Hilbert space H. Further we provide a condition for \(C_{R,T}\) to be q-frequently hypercyclic on the Schatten von Neumann classes \(S_p(H)\). We also characterize frequent hypercyclicity of \(C_{M^*_\varphi ,M_\psi }\) on the trace-class of the Hardy space, where the symbol \(M_\varphi \) denotes the multiplication operator associated to \(\varphi \).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号