首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As shown by quartz-crystal microbalance measurements, in the potential range from 0.0 to 0.55 V (NHE), sulfide ions adsorbed on the gold electrode surface accelerate the electrode reaction of anodic dissolution of gold in acidic thiocarbamide solutions. The microbalance determination of kinetic parameters at a constant electrode surface coverage with sulfide ions includes a special procedure developed for the determination of the gold dissolution rate. The conditions (the potential range and the potential scan rate) of independence of the dissolution rate from the diffusion limitations associated with the ligand delivery is determined. Under these conditions, the polarization curve is shown to be linear on semilogarithmic coordinates and correspond to the Tafel equation. In this potential range, the transfer coefficient α and the reaction order with respect to the ligand p are determined at a constant electrode surface coverage θ with adsorbed sulfide ions. It is shown that with the transition from the surface coverage with sulfide ions θ = 0.1 to θ = 0.8, the transfer coefficient α changes from 0.25 to 0.55, the exchange current (i 0) changes from 10?5 to 5 × 10?5 A/cm2, and the effective reaction order p with respect to the ligand changes from 0.2 to 1.3. The mentioned changes are associated not only with the acceleration of gold dissolution in the presence of chemisorbed sulfide ions but also with the changeover in the mechanism of this process. Quartz-crystal microbalance data on the gold dissolution rate qualitatively agree with the results of voltammetric measurements of a renewable gold electrode. A possible version of explanation of the catalytic effect of sulfide ion adsorption on the gold dissolution is put forward.  相似文献   

2.
The inhibition of the electrode reaction of Cd(II) in seawater as supporting electrolyte in the presence of the non-ionic surfactant T-X-100 was studied by differential pulse polarography in a wide concentration range of surfactant (10?7?5×10?4 mol dm?3). The kinetic parameters, the rate constant ks and the transfer coefficient α of the electrode reaction were estimated from the shape and the height of the corresponding differential pulse polarograms, using theoretical curves obtained by digital simulation.  相似文献   

3.
Rate constants of the electrode reaction V(III)+e → V(II) in water+acetone mixtures were determined. In the regions of irreversible and quasi-reversible behaviour we used polarographic and square-wave polarographic measurements, respectively. The values of the constant go through a minimum with increasing concentration of acetone. Following the published data for the Eu(III)/Eu(II) system (H. Elzanowska, Ph. D. Thesis, Warsaw, 1957), this behaviour was explained by the simultaneous reduction of differently solvated ions in the solution where, depending on the degree of electrode coverage, a partial resolvation at the electrode surface can occur. The calculated dependence of the rate constant on the solvent composition is in accord with experimental values.  相似文献   

4.
The redox behavior of Cd(II) and the interaction of Cd(II) with cyclic amino acid, proline, have been studied in 0.1 M KCl, 0.1 M NaClO4 and acetate buffer of different pH. The CVs were recorded at glassy carbon electrode within the potential window 200 and ?1500 mV. The reference and counter electrode used were Ag/AgCl and Pt wire, respectively. The cyclic voltammograms show one pair of cathodic and anodic peaks for the Cd(II)/Cd(0) system indicating the involvement of two electron transfer processes. The peak potential shift and charge transfer rate constant (kf) values strongly support the interaction between metal and ligand. The higher value of peak current ratio and peak potential separation (ΔE) indicate that the systems are quasireversible. The effect of supporting electrolyte and concentration of electro active species on the interaction were also studied.  相似文献   

5.
The formal potentials and the kinetics parameters for the electrode process: Cr2++2 e = Cro occurring at a mercury electrode in solutions of NaClO4, NaCI, NaBr, and NaSCN, were determined from the analysis of irreversible anodic and cathodic chronocoulometric waves. The interaction of Cr(II) with Cl was found to be negligible (equilibrium constant K <1) whereas the interaction with Br and SCN was weak (K1(Br)=1 M−1 and β2(SCN) = 25 M−2). The results of the analysis of the formal rate constant of this and other amalgam forming reactions suggested that the formation of amalgam was the most important step in the whole process.  相似文献   

6.
Nafion‐coated antimony film electrode (NCAFE) was prepared in situ by simultaneously plated antimony with analytes, and applied to the determination of trace Pb(II) and Cd(II) in non‐deaerated solutions by differential pulse anodic stripping voltammetry (DPASV). Various experimental parameters, which influenced the response of the NCAFE to those metals, were thoroughly optimized and discussed. The results indicated that the sensitivity and resistance to surfactants at the NCAFE were remarkably improved with relative to the antimony film electrode (AFE). In the presence of 5 mg·L?1 gelatin, the peak heights at the NCAFE showed 4‐fold enhancement for Pb and a 9‐fold enhancement for Cd over a bare AFE. Reproducibility of the sensor was satisfactory, and the relative standard deviations were 4.8% for 20 μg·L?1 Pb and 3.2% for 25 μg·L?1 Cd (n=15) with preconcentration time of 180 s. The determination limits (S/N=3) of this sensor were determined to be 0.15 μg·L?1 for Pb and 0.30 μg·L?1 for Cd with accumulation time of 300 s. The NCAFE was successfully applied to determining Pb(II) and Cd(II) in vegetable and water samples with satisfactory results.  相似文献   

7.
8.
The reduction of bromide solutions of various metals with the silver (walden) reductor is described. Iron(III) is quantitatively reduced to iron(II) in 0.1–4 M HBr; similarly, copper(II) is reduced to copper(I) in > 1.5 M HBr, and vanadium.(V) to vanadium(IV) and uranium(VI) to uranium(IV) in > 0.3 M HBr. Tin(IV) is only partly reduced to tin(II) below 6M HBr. Reduction of molybdenum(VI) to molybdenum(V) requires heating, whereas reduction of tungsten(VI) is never quantitative. Suitable conditions for the titrations are described.  相似文献   

9.
In this work,we reported a simultaneous determination approach for Pb(II),Cd(II)and Zn(II)atμg L 1concentration levels using differential pulse stripping voltammetry on a bismuth film electrode(BiFE).The BiFE could be prepared in situ when the sample solution contained a suitable amount of Bi(NO)3,and its analytical performance was evaluated for the simultaneous determination of Pb(II),Cd(II)and Zn(II)in solutions.The determination limits were found to be 0.19μg L 1for Zn(II),and0.28μg L 1for Pb(II)and Cd(II),with a preconcentration time of 300 s.The BiFE approach was successfully applied to determine Pb(II),Cd(II)and Zn(II)in tea leaf and infusion samples,and the results were in agreement with those obtained using an atomic absorption spectrometry approach.Without Hg usage,the in situ preparation for BiFE supplied a green and acceptability sensitive method for the determination of the heavy metal ions.  相似文献   

10.
S. Ashok Kumar 《Talanta》2007,72(2):831-838
The adsorption processes and electrochemical behavior of 4-nitroaniline (4-NA) adsorbed onto glassy carbon electrodes (GCE) have been investigated in aqueous 0.1 M nitric acid (HNO3) electrolyte solutions using cyclic voltammetry (CV). 4-NA adsorbs onto GCE surfaces, and upon potential cycling past −0.2 V, is transformed into the arylhydroxylamine (ArHA) derivative which exhibits a well-behaved pH dependent redox couple centered at 0.32 V at pH 1.5. It is noted as arylhydroxylamine modified glassy carbon electrodes (HAGCE). This modified electrode can be readily used as an immobilization matrix to entrap proteins and enzymes. In our studies, myoglobin (Mb) was used as a model protein for investigation. A pair of well-defined reversible redox peaks of Mb (Fe(III)-Fe(II)) was obtained at the Mb/arylhydroxylamine modified glassy carbon electrode (Mb/HAGC) by direct electron transfer between the protein and the GCE. The formal potential (E0), the apparent coverage (Γ*) and the electron-transfer rate constant (ks) were calculated as −0.317 V, 8.26 × 10−12 mol/cm2 and 51 ± 5 s−1, respectively. Dramatically enhanced biocatalytic activity was exemplified at the Mb/HAGC electrode by the reduction of hydrogen peroxide (H2O2), trichloroacetic acid (TCA) and oxygen (O2). The Mb/arylhydroxylamine film was also characterized by UV-visible spectroscopy (UV-vis), scanning electron microscope (SEM) indicating excellent stability and good biocompatibility of the protein in the arylhydroxylamine modified electrode. This new Mb/HAGC electrode exhibited rapid electrochemical response (2 s) for H2O2 and had good stability in physiological condition, showing the potential applicability of the films in the preparation of third generation biosensors or bioreactors based on direct electrochemistry of the proteins.  相似文献   

11.
The behavior of Cd(II), Pb(II), Cu(II), and I in the aqueous solutions of sodium chloride is studied by stripping voltammetry. A new version of using an indicator electrode from carbon glass ceramics modified with mercury for the consecutive stripping determination of Cd(II), Pb(II), Cu(II), and iodide is proposed. The mercury-graphite electrode was formed in the solution of a supporting electrolyte based on NH4Cl, HCl, 0.05 M potassium tetraoxalate (KH3C4O3 · 2H2O), and 5 × 10−5 M mercury(II). At first, Cd(II), Pb(II), Cu(II), and then iodide were determined by anodic-cathodic stripping voltammetry after adding a sample solution (table salt, 10–100 mg/mL NaCl).  相似文献   

12.
Modification of an aluminum electrode by means of a thin film of cobalt hexacyanoferrate (CoHCF) using electroless and electrochemical procedures is described. The modification conditions of the aluminum surface, including the electroless deposition of metallic cobalt on the electrode surface from CoCl2+NaF solution and the chemical derivatization of the deposited cobalt to give a CoHCF film in 0.25 M KCl+0.25 M K3[Fe(CN)6] solution, have been determined. The modified Al electrodes prepared under optimum conditions show one or two well-defined redox couples in phosphate buffer solutions of pH 7.2, depending on the preparation procedure, due to the [CoIIFeIII/II(CN)6]–/2– system. The effect of pH, alkali metal cations, and anions of the supporting electrolyte on the electrochemical characteristics of the modified electrode were studied. Diffusion coefficients of hydrated Na+ in the film, the transfer coefficient, and the transfer rate constant for electrons were determined. The stability of the modified electrodes under various experimental conditions was studied and their high stability in the sodium phosphate buffer solutions was confirmed. Enhanced stability was observed when the modified electrode was scanned in fresh solutions of RuCl3 between 0 and 1 V for at least 20 cycles, due to the formation of mixed hexacyanoferrates of cobalt and ruthenium. Electronic Publication  相似文献   

13.
Electrochemical kinetic parameters of the V(III)/V(II) and Eu(III)/Eu(II) couples in sulfuric, perchloric, hydrochloric, and hydrobromic acids were measured by potentiostatic and double pulse galvanostatic methods. The 2 potentials in these solutions were calculated from electrocapillary measurements and the effect of the 2 potentials on the electrode kinetics was discussed. The kinetic data after the Frumkin correction was applied show a very good agreement in H2SO4, HClO4, and HCl solutions, if we assume that the non-complexed ion, which is partially supplied by the dissociation of complex ions, participates in the electrode reaction. The corrected rate constants in the bromide solution were about ten times larger than those to be expected from the 2 potentials in the case of the V(III)/V(II) couple and a small acceleration effect was observed for the Eu(III)/Eu(II) couple. The greater reaction rate in the bromide solution is explained by the bridging effect.  相似文献   

14.
Parallel optical and electrochemical studies on the V(III)/V(II) system in H2O + acetonitrile (AN) + CF3SO3H mixtures have been performed. It was found, on the basis of the spectra of vanadium ions in the visible range, that V(III) was totally hydrated in mixtures up to xAN ⋍ 0.6 while V(II) was specifically solvated by AN molecules, even at a molar fraction of acetonitrile in H2O + AN mixtures as low as 0.02. In agreement with this, the formal potentials of the V(III)/V(II) system expressed versus the ferrocene electrode move to less negative potentials with an increase in AN concentration.Straightforward correlations of the electrode kinetics of the V(III)/V(II) system at a mercury electrode in H2O + AN mixtures with both the electrode surface coverage by AN molecules and the resolvation of vanadium ions in the bulk solution were found.  相似文献   

15.
The TiC working electrode was tested as a novel, potential electrode for anodic stripping voltammetric determination of lead(II) ions traces. To demonstrate the practical applicability of the TiC electrode, an underpotential deposition/dissolution (UPD) phenomena system in electrolyte without removal of oxygen was tested. The electrode was constructed be means of mounting a TiC disk (Ø=3.5 mm) in a resin body. Three compositions of TiC were tested differing in stoichiometry, namely TiC0.6, TiC0.8, and TiC1.0. The key problem is the method of electrochemical activation of the TiC electrode. No or improperly activated electrode is not polarized and is unsuitable as a voltammetric sensor. The TiC electrode was used for the determination of Pb2+ in concentrations ranging from 1 to 100 nM. The instrumental parameters, composition of supporting electrolyte and procedures of the electrode activation were optimized. The repeatability of DP ASV runs in synthetic solutions covering the entire concentration range is better than 3%. The calibration curve is characterized by a correlation coefficient of at least 0.999. The detection limit was 2 nM for an electrodeposition time of 30 s. The method enables determination of Pb2+ in the presence of, among the others, high excesses of Cd, Cu, In, Sb, Se, and Tl ions as well as surfactants, Triton X‐100 and humic acids. The analysis of Pb2+ in synthetic solutions with and without surfactants, certified reference material and natural water samples have been performed. The voltammetric data were associated with the structural characterization of the electrode surface using scanning electron microscopy (SEM) and X‐ray fluorescence spectroscopy (XRF).  相似文献   

16.
Li Zheng  Jun-feng Song 《Talanta》2009,79(2):319-128
A modified electrode Ni(II)-BA-MWCNT-PE has been fabricated by electrodepositing nickel(II)-baicalein [Ni(II)-BA] complex on the surface of multi-wall carbon nanotube paste electrode (MWCNT-PE) in alkaline solution. The Ni(II)-BA-MWCNT-PE exhibits the characteristic of improved reversibility and enhanced current responses of the Ni(III)/Ni(II) couple compared with Ni(II)-BA-CPE. It also shows good electrocatalytic activity toward the oxidation of hydrazine. Kinetic parameters such as the electron transfer coefficient α, rate constant ks of the electrode reaction, the diffusion coefficient D of hydrazine and the catalytic rate constant kcat of the catalytic reaction are determined. Moreover, the catalytic currents present linear dependence on the concentration of hydrazine from 2.5 μM to 0.2 mM by amperometry. The detection limit and sensitivity are 0.8 μM and 69.9 μA mM−1, respectively. The modified electrode for hydrazine determination is of the property of simple preparation, good stability, fast response and high sensitivity.  相似文献   

17.
18.
The d.c. polarographic current-potential curves of Cd(II)-EDTA complexes were examined in the pH range 0.5–10.0, to elucidate the mechanism of their electrode processes and to determine the relevant electrochemical kinetic parameters. It was shown that the first wave observed below pH 3 at ?0.58 to ?0.65 V vs. SCE is the reversible reduction wave of Cd(II) aquo-ion with kinetically-controlled limiting current, and the second wave observed above pH 1.5 at ?0.75 to ?1.21 V vs. SCE corresponds to the simultaneous irreversible reduction of four complex species, CdH3L+, CdH2L, CdHL? and CdL2?, where CdHpL(p?2)+ and L4? denote the protonated complex species with p protons and the unprotonated EDTA ion, respectively. Analysis of the dependence of limiting current on the hydrogen ion concentration led to the conclusion that the preceding reaction determining the behaviour of limiting current is CdH3L+?Cd2++H3L? with k3d=6.3×102 s?1 and k3f=3.3×106 s?1M?1, where k3d and k3f are the dissociation and formation rate constants, respectively. On the other hand, from analysis of the dependence of half-wave potentials of the second wave on the hydrogen ion concentration, the kinetic parameters of the four complex species were evaluated, and are given in Table 1. Further, it was shown that the cathodic rate constants of these four charge transfer processes at some reference potential together with those of Cd(II)-HEDTA complexes fulfil the linear free energy relationship.  相似文献   

19.
This paper describes the preparation of a new sensor based on Zn‐ferrite modified glassy carbon paste electrode and its electrochemical application for the determination of trace Cd(II) ions in waste waters using differential pulse anodic stripping voltammetry (DPASV). Different Zn/Ni ferrite nanoparticles were synthesized and characterized using scanning electron microscopy (SEM) and X‐ray powder diffraction (XRPD). The prepared ferrite nanoparticles were used for the preparation of Zn‐ferrite‐modified glassy carbon paste electrode (ZnMGCPE) for determination of Cd(II) at nanomolar levels in waste water at pH 5. The different parameters such as conditions of preparation, Zn2+/Ni2+/Fe2+ ratio and electrochemical parameters, percentage of modifier, accumulation time, pH and accumulation potential were investigated. Besides, interference measurements were also evaluated under optimized parameters. The best voltammetric response was observed for ZnFe2O4 modifier, when the percentage of modifier was 3 %, accumulation time 9 min, pH of supporting electrolyte 5 and accumulation potential ?1.05 V. Thus prepared electrode displays excellent response to Cd(II) with a detection limit of 0.38 ppb, and selective detection toward Cd(II) was achieved.  相似文献   

20.
A new composite film of microbial exocellular polysaccharide‐gellan gum (GG) and hydrophilic room temperature ionic liquid 1‐butyl‐3‐methyl‐imidazolium tetrafluoroborate (BMIMBF4) was firstly used as an immobilization matrix to entrap horseradish peroxidase (HRP), and its properties were studied by UV/vis spectroscopy, cyclic voltammetry and electrochemical impedance spectroscopy. The results showed that BMIMBF4 could promote the electron transfer between HRP and electrode surface, and the existence of GG could successfully immobilize BMIMBF4 on the electrode surface with improved stability. HRP–BMIMBF4–GG/GCE exhibited a pair of well‐defined and quasireversible cyclic voltammetric peaks in 0.1 M pH 7.0 phosphate buffer solutions at 1.8 V/s, which was the characteristic of HRP Fe(III)/Fe(II) redox couples. The formal potentials (E°′) was ?0.368 V (vs. SCE) and the peak‐to‐peak potential separation (ΔEP) was 0.058 V. The peak currents were five times as large as those of HRP–GG/GCE. The average surface coverage (Γ*) and the apparent Michaelis‐Menten constant (Km) were 4.5×10?9 mol/cm2 and 0.67 μM, respectively. The electron transfer rate constant was estimated to be 15.8 s?1. The proposed electrode showed excellent electrocatalytic activity towards hydrogen peroxide (H2O2). The linear dynamic range for the detection of H2O2 was 0.05–0.5 μM with a correlation coefficient of 0.9945 and the detection limit was estimated at about 0.02 μM (S/N=3). BMIMBF4–GG composite film was promising to immobilize other redox enzymes or proteins and attain their direct electrochemistry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号