首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We propose a polynomial time f-algorithm (a deterministic algorithm which uses an oracle for factoring univariate polynomials over \(\mathbb {F}_q\)) for computing an isomorphism (if there is any) of a finite-dimensional \(\mathbb {F}_q(x)\)-algebra \(\mathcal{A}\) given by structure constants with the algebra of n by n matrices with entries from \(\mathbb {F}_q(x)\). The method is based on computing a finite \(\mathbb {F}_q\)-subalgebra of \(\mathcal{A}\) which is the intersection of a maximal \(\mathbb {F}_q[x]\)-order and a maximal R-order, where R is the subring of \(\mathbb {F}_q(x)\) consisting of fractions of polynomials with denominator having degree not less than that of the numerator.  相似文献   

2.
Let \(\Omega \) be a bounded, uniformly totally pseudoconvex domain in \(\mathbb {C}^2\) with smooth boundary \(b\Omega \). Assume that \(\Omega \) is a domain admitting a maximal type F. Here, the condition maximal type F generalizes the condition of finite type in the sense of Range (Pac J Math 78(1):173–189, 1978; Scoula Norm Sup Pisa, pp 247–267, 1978) and includes many cases of infinite type. Let \(\alpha \) be a d-closed (1, 1)-form in \(\Omega \). We study the Poincaré–Lelong equation
$$\begin{aligned} i\partial \bar{\partial }u=\alpha \quad \text {on}\, \Omega \end{aligned}$$
in \(L^1(b\Omega )\) norm by applying the \(L^1(b\Omega )\) estimates for \(\bar{\partial }_b\)-equations in [11]. Then, we also obtain a prescribing zero set of Nevanlinna holomorphic functions in \(\Omega \).
  相似文献   

3.
We denote by \(\mathcal {H}_{d,g,r}\) the Hilbert scheme of smooth curves, which is the union of components whose general point corresponds to a smooth irreducible and non-degenerate curve of degree d and genus g in \(\mathbb {P}^r\). In this note, we show that any non-empty \(\mathcal {H}_{g,g,3}\) is irreducible without any restriction on the genus g. This extends the result obtained earlier by Iliev (Proc Am Math Soc 134:2823–2832, 2006).  相似文献   

4.
For any given two graphs G and H, the notation \(F\rightarrow \) (GH) means that for any red–blue coloring of all the edges of F will create either a red subgraph isomorphic to G or a blue subgraph isomorphic to H. A graph F is a Ramsey (GH)-minimal graph if \(F\rightarrow \) (GH) but \(F-e\nrightarrow (G,H)\), for every \(e \in E(F)\). The class of all Ramsey (GH)-minimal graphs is denoted by \(\mathcal {R}(G,H)\). In this paper, we construct some infinite families of trees belonging to \(\mathcal {R}(P_3,P_n)\), for \(n=8\) and 9. In particular, we give an algorithm to obtain an infinite family of trees belonging to \(\mathcal {R}(P_3,P_n)\), for \(n\ge 10\).  相似文献   

5.
In this paper we are concerned with the family \(\widetilde{S}^t_A(\mathbb {B}^n)\) (\(t\ge 0\)) of normalized biholomorphic mappings on the Euclidean unit ball \(\mathbb {B}^n\) in \({\mathbb {C}}^n\) that can be embedded in normal Loewner chains whose normalizations are given by time-dependent operators \(A\in \widetilde{\mathcal {A}}\), where \(\widetilde{\mathcal {A}}\) is a family of measurable mappings from \([0,\infty )\) into \(L({\mathbb {C}}^n)\) which satisfy certain natural assumptions. In particular, we consider extreme points and support points associated with the compact family \(\widetilde{S}^t_A(\mathbb {B}^n)\), where \(A\in \widetilde{\mathcal {A}}\). We prove that if \(f(z,t)=V(t)^{-1}z+\cdots \) is a normal Loewner chain such that \(V(s)f(\cdot ,s)\in \mathrm{ex}\,\widetilde{S}^s_A(\mathbb {B}^n)\) (resp. \(V(s)f(\cdot ,s)\in \mathrm{supp}\,\widetilde{S}^s_A(\mathbb {B}^n)\)), then \(V(t)f(\cdot ,t)\in \mathrm{ex}\, \widetilde{S}^t_A(\mathbb {B}^n)\), for all \(t\ge s\) (resp. \(V(t)f(\cdot ,t)\in \mathrm{supp}\,\widetilde{S}^t_A(\mathbb {B}^n)\), for all \(t\ge s\)), where V(t) is the unique solution on \([0,\infty )\) of the initial value problem: \(\frac{d V}{d t}(t)=-A(t)V(t)\), a.e. \(t\ge 0\), \(V(0)=I_n\). Also, we obtain an example of a bounded support point for the family \(\widetilde{S}_A^t(\mathbb {B}^2)\), where \(A\in \widetilde{\mathcal {A}}\) is a certain time-dependent operator. We also consider the notion of a reachable family with respect to time-dependent linear operators \(A\in \widetilde{\mathcal {A}}\), and obtain characterizations of extreme/support points associated with these families of bounded biholomorphic mappings on \(\mathbb {B}^n\). Useful examples and applications yield that the study of the family \(\widetilde{S}^t_A(\mathbb {B}^n)\) for time-dependent operators \(A\in \widetilde{\mathcal {A}}\) is basically different from that in the case of constant time-dependent linear operators.  相似文献   

6.
Let \(\mathcal {A}=(A_n)_{n\in \mathbb {N}}\) be an ascending chain of commutative rings with identity and let \(\mathcal {A}[X]\) (respectively, \(\mathcal {A}[[X]]\)) be the ring of polynomials (respectively, power series) with coefficient of degree n in \(A_n\) for each \(n\in \mathbb {N}\) (Hamed and Hizem in Commun Algebra 43:3848–3856, 2015; Haouat in Thèse de doctorat. Faculté des Sciences de Tunis, 1988). An A-module M is said to satisfy ACCR if the ascending chain of residuals of the form \(N:B\subseteq N:B^2\subseteq N:B^3\subseteq \cdots \) terminates for every submodule N of M and for every finitely generated ideal B of A (Lu in Proc Am Math Soc 117:5–10, 1993). We give necessary and sufficient condition for the ring \(\mathcal {A}[X]\) (respectively, \(\mathcal {A}[[X]]\)) to satisfy ACCR.  相似文献   

7.
The space of real Borel measures \(\mathcal {M}(S)\) on a metric space S under the flat norm (dual bounded Lipschitz norm), ordered by the cone \(\mathcal {M}_+(S)\) of nonnegative measures, is considered from an ordered normed vector space perspective in order to apply the well-developed theory of this area. The flat norm is considered in place of the variation norm because subsets of \(\mathcal {M}_+(S)\) are compact and semiflows on \(\mathcal {M}_+(S)\) are continuous under much weaker conditions. In turn, the flat norm offers new challenges because \(\mathcal {M}(S)\) is rarely complete and \(\mathcal {M}_+(S)\) is only complete if S is complete. As illustrations serve the eigenvalue problem for bounded additive and order-preserving homogeneous maps on \(\mathcal {M}_+(S)\) and continuous semiflows. Both topics prepare for a dynamical systems theory on \(\mathcal {M}_+(S)\).  相似文献   

8.
We denote by \(\mathcal {H}_{d,g,r}\) the Hilbert scheme of smooth curves, which is the union of components whose general point corresponds to a smooth irreducible and non-degenerate curve of degree d and genus g in \(\mathbb {P}^r\). In this note, we show that any non-empty \(\mathcal {H}_{g+2,g,4}\) is irreducible, generically smooth, and has the expected dimension \(4g+11\) without any restriction on the genus g. Our result augments the irreducibility result obtained earlier by Iliev (Proc Am Math Soc 134:2823–2832, 2006), in which several low genus \(g\le 10\) cases have been left untreated.  相似文献   

9.
Let A and B be two points of \(\mathop {\mathrm{PG}}(d,q^n)\) and let \(\Phi \) be a collineation between the stars of lines with vertices A and B, that does not map the line AB into itself. In this paper we prove that if \(d=2\) or \(d\ge 3\) and the lines \(\Phi ^{-1}(AB), AB, \Phi (AB) \) are not in a common plane, then the set \(\mathcal{C}\) of points of intersection of corresponding lines under \(\Phi \) is the union of \(q-1\) scattered \({\mathbb {F}}_{q}\)-linear sets of rank n together with \(\{A,B\}\). As an application we will construct, starting from the set \(\mathcal{C}\), infinite families of non-linear \((d+1, n, q;d-1)\)-MRD codes, \(d\le n-1\), generalizing those recently constructed in Cossidente et al. (Des Codes Cryptogr 79:597–609, 2016) and Durante and Siciliano (Electron J Comb, 2017).  相似文献   

10.
Let R be a commutative Noetherian ring, \({\mathfrak {a}}\) an ideal of R, M a finitely generated R-module, and \({\mathcal {S}}\) a Serre subcategory of the category of R-modules. We introduce the concept of \({\mathcal {S}}\)-minimax R-modules and the notion of the \({\mathcal {S}}\)-finiteness dimension
$$\begin{aligned} f_{\mathfrak {a}}^{{\mathcal {S}}}(M):=\inf \lbrace f_{\mathfrak {a}R_{\mathfrak {p}}}(M_{\mathfrak {p}}) \vert \mathfrak {p}\in {\text {Supp}}_R(M/ \mathfrak {a}M) \text { and } R/\mathfrak {p}\notin {\mathcal {S}} \rbrace \end{aligned}$$
and we will prove that: (i) If \({\text {H}}_{\mathfrak {a}}^{0}(M), \cdots ,{\text {H}}_{\mathfrak {a}}^{n-1}(M)\) are \({\mathcal {S}}\)-minimax, then the set \(\lbrace \mathfrak {p}\in {\text {Ass}}_R( {\text {H}}_{\mathfrak {a}}^{n}(M)) \vert R/\mathfrak {p}\notin {\mathcal {S}}\rbrace \) is finite. This generalizes the main results of Brodmann–Lashgari (Proc Am Math Soc 128(10):2851–2853, 2000), Quy (Proc Am Math Soc 138:1965–1968, 2010), Bahmanpour–Naghipour (Proc Math Soc 136:2359–2363, 2008), Asadollahi–Naghipour (Commun Algebra 43:953–958, 2015), and Mehrvarz et al. (Commun Algebra 43:4860–4872, 2015). (ii) If \({\mathcal {S}}\) satisfies the condition \(C_{\mathfrak {a}}\), then
$$\begin{aligned} f_{\mathfrak {a}}^{{\mathcal {S}}}(M)= \inf \lbrace i\in {\mathbb {N}}_{0} \vert {\text {H}}_{\mathfrak {a}}^{i}(M) \text { is not } {\mathcal {S}}\hbox {-}minimax\rbrace . \end{aligned}$$
This is a formulation of Faltings’ Local-global principle for the \({\mathcal {S}}\)-minimax local cohomology modules. (iii) \( \sup \lbrace i\in {\mathbb {N}}_{0} \vert {\text {H}}_{\mathfrak {a}}^{i}(M) \text { is not } {\mathcal {S}}\text {-minimax} \rbrace = \sup \lbrace i\in {\mathbb {N}}_{0} \vert {\text {H}}_{\mathfrak {a}}^{i}(M) \text { is not in } {\mathcal {S}} \rbrace \).
  相似文献   

11.
Let G be a Polish locally compact group acting on a Polish space \({{X}}\) with a G-invariant probability measure \(\mu \). We factorize the integral with respect to \(\mu \) in terms of the integrals with respect to the ergodic measures on X, and show that \(\mathrm {L}^{p}({{X}},\mu )\) (\(1\le p<\infty \)) is G-equivariantly isometrically lattice isomorphic to an \({\mathrm {L}^p}\)-direct integral of the spaces \(\mathrm {L}^{p}({{X}},\lambda )\), where \(\lambda \) ranges over the ergodic measures on X. This yields a disintegration of the canonical representation of G as isometric lattice automorphisms of \(\mathrm {L}^{p}({{X}},\mu )\) as an \({\mathrm {L}^p}\)-direct integral of order indecomposable representations. If \(({{X}}^\prime ,\mu ^\prime )\) is a probability space, and, for some \(1\le q<\infty \), G acts in a strongly continuous manner on \(\mathrm {L}^{q}({{X}}^\prime ,\mu ^\prime )\) as isometric lattice automorphisms that leave the constants fixed, then G acts on \(\mathrm {L}^{p}({{X}}^{\prime },\mu ^{\prime })\) in a similar fashion for all \(1\le p<\infty \). Moreover, there exists an alternative model in which these representations originate from a continuous action of G on a compact Hausdorff space. If \(({{X}}^\prime ,\mu ^\prime )\) is separable, the representation of G on \(\mathrm {L}^p(X^\prime ,\mu ^\prime )\) can then be disintegrated into order indecomposable representations. The notions of \({\mathrm {L}^p}\)-direct integrals of Banach spaces and representations that are developed extend those in the literature.  相似文献   

12.
We consider various aspects of the Segre variety \({\mathcal{S}:=\mathcal{S} _{1,1,1}(2)}\) in PG(7, 2), whose stabilizer group \({\mathcal{G}_{\mathcal{S}}<{\rm GL}(8,2)}\) has the structure \({\mathcal{N}\rtimes{\rm Sym}(3),}\) where \({\mathcal{N} :={\rm GL}(2,2)\times{\rm GL}(2,2)\times{\rm GL} (2,2).}\) In particular we prove that \({\mathcal{S}}\) determines a distinguished Z 3-subgroup \({\mathcal{Z}<{\rm GL}(8,2)}\) such that \({A\mathcal{Z}A^{-1}=\mathcal{Z},}\) for all \({A\in\mathcal{G}_{\mathcal{S}},}\) and in consequence \({\mathcal{S}}\) determines a \({\mathcal{G}_{\mathcal{S}}}\)-invariant spread of 85 lines in PG(7, 2). Furthermore we see that Segre varieties \({\mathcal{S}_{1,1,1}(2)}\) in PG(7, 2) come along in triplets \({\{\mathcal{S},\mathcal{S}^{\prime},\mathcal{S}^{\prime\prime}\}}\) which share the same distinguished Z 3-subgroup \({\mathcal{Z}<{\rm GL}(8,2).}\) We conclude by determining all fifteen \({\mathcal{G}_{\mathcal{S}}}\)-invariant polynomial functions on PG(7, 2) which have degree < 8, and their relation to the five \({\mathcal{G}_{\mathcal{S}}}\)-orbits of points in PG(7, 2).  相似文献   

13.
An m-cover of the Hermitian surface \(\mathrm {H}(3,q^2)\) of \(\mathrm {PG}(3,q^2)\) is a set \(\mathcal {S}\) of lines of \(\mathrm {H}(3,q^2)\) such that every point of \(\mathrm {H}(3,q^2)\) lies on exactly m lines of \(\mathcal {S}\), and \(0<m<q+1\). Segre (Annali di Matematica Pura ed Applicata Serie Quarta 70:1–201, 1965) proved that if q is odd, then \(m=(q+1)/2\), and called such a set \(\mathcal {S}\) of lines a hemisystem. Penttila and Williford (J Comb Theory Ser A 118(2):502–509, 2011) introduced the notion of a relative hemisystem of a generalised quadrangle \(\varGamma \) with respect to a subquadrangle \(\varGamma '\): a set of lines \(\mathcal {R}\) of \(\varGamma \) disjoint from \(\varGamma '\) such that every point P of \(\varGamma \setminus \varGamma '\) has half of its lines (disjoint from \(\varGamma '\)) lying in \(\mathcal {R}\). In this paper, we provide an analogue of Segre’s result by introducing relative m-covers of generalised quadrangles of order \((q^2,q)\) with respect to a subquadrangle and proving that m must be q / 2 when the subquadrangle is doubly subtended. In particular, a relative m-cover of \(\mathrm {H}(3,q^2)\) with respect to a symplectic subgeometry \(\mathrm {W}(3,q)\) is a relative hemisystem.  相似文献   

14.
Fisher’s (Proceedings of Royal Society Series A 144, 285–307 1934, 1956) example remains a classic where the maximum likelihood estimator (T) was non-sufficient, had less than full information, but an ancillarity complement (S) helped in recovering the full information \(\mathcal {I}_{(T,S)}(\theta )\). In the absence of other readily accessible easy-to-grasp examples of similar nature, we begin with general calculations for useful information entities, both unconditional (\(\mathcal {I}_{T}(\theta )\)) and conditional (\(\mathcal {I}_{T\mid S}(\theta )\)). These have led us to propose a number of new illustrations in the spirit of the original example. Then, we introduce a multivariate data extension of the original example with an illustration. We wrap up this investigation with an example of a non-sufficient MLE T that has (i) the full Fisher information, and (ii) has an ancillary complement S.  相似文献   

15.
One partially ordered set, Q, is a Tukey quotient of another, P, if there is a map ? : PQ carrying cofinal sets of P to cofinal sets of Q. Two partial orders which are mutual Tukey quotients are said to be Tukey equivalent. Let X be a space and denote by \(\mathcal {K}(X)\) the set of compact subsets of X, ordered by inclusion. The principal object of this paper is to analyze the Tukey equivalence classes of \(\mathcal {K}(S)\) corresponding to various subspaces S of ω 1, their Tukey invariants, and hence the Tukey relations between them. It is shown that ω ω is a strict Tukey quotient of \({\Sigma }(\omega ^{\omega _{1}})\) and thus we distinguish between two Tukey classes out of Isbell’s ten partially ordered sets from (Isbell, J. R.: J. London Math Society 4(2), 394–416, 1972). The relationships between Tukey equivalence classes of \(\mathcal {K}(S)\), where S is a subspace of ω 1, and \(\mathcal {K}(M)\), where M is a separable metrizable space, are revealed. Applications are given to function spaces.  相似文献   

16.
In this paper, we consider a two-parameter polynomial generalization, denoted by \(\mathcal {G}_{a,b}(n,k;r)\), of the r-Lah numbers which reduces to these recently introduced numbers when a = b = 1. We present several identities for \(\mathcal {G}_{a,b}(n,k;r)\) that generalize earlier identities given for the r-Lah and r-Stirling numbers. We also provide combinatorial proofs of some earlier identities involving the r-Lah numbers by defining appropriate sign-changing involutions. Generalizing these arguments yields orthogonality-type relations that are satisfied by \(\mathcal {G}_{a,b}(n,k;r)\).  相似文献   

17.
18.
In most classical holomorphic function spaces on the unit disk in which the polynomials are dense, a function f can be approximated in norm by its dilates \(f_r(z):=f(rz)~(r<1)\). We show that this is not the case for the de Branges–Rovnyak spaces \(\mathcal{H}(b)\). More precisely, we exhibit a space \(\mathcal{H}(b)\) in which the polynomials are dense and a function \(f\in \mathcal{H}(b)\) such that \(\lim _{r\rightarrow 1^-}\Vert f_r\Vert _{\mathcal{H}(b)}=\infty \). On the positive side, we prove the following approximation theorem for Toeplitz operators on general de Branges–Rovnyak spaces \(\mathcal{H}(b)\). If \((h_n)\) is a sequence in \(H^\infty \) such that \(\Vert h_n\Vert _{H^\infty }\le 1\) and \(h_n(0)\rightarrow 1\), then \(\Vert T_{\overline{h}_n}f-f\Vert _{\mathcal{H}(b)}\rightarrow 0\) for all \(f\in \mathcal{H}(b)\). Using this result, we give the first constructive proof that, if b is a nonextreme point of the unit ball of \(H^\infty \), then the polynomials are dense in \(\mathcal{H}(b)\).  相似文献   

19.
C denotes the category of compact regular frames with frame homomorphisms. A function \(\mathcal {X}\), which assigns to each C-object F a subalgebra of \(\mathcal {P}(F)\) that contains the complemented elements of F is said to be a polar function. An essential extension H of F is a \(\mathcal {X}\)-splitting frame of F if whenever \(p \in \mathcal {X}(F)\), then the polar generated by p in H is complemented. For F∈ C we examine the least \(\mathcal {X}\)-splitting extension and prove that every invariant polar function generates a C-hull class of frames. In addition, we define the concept of a functorial polar function and prove that each functorial polar function generates an epireflective subcategory of the category compact regular frames with skeletal maps.  相似文献   

20.
Let R and S be rings and S C R a semidualizing bimodule. We investigate the relative Tor functors \(\text {Tor}_{i}^{\mathcal {M}\mathcal {L}_{C}}(-,-)\) defined via C-level resolutions, and these functors are exactly the relative Tor functors \(\text {Tor}_{i}^{\mathcal {M}\mathcal {F}_{C}}(-,-)\) defined by Salimi, Sather-Wagstaff, Tavasoli and Yassemi provided that S = R is a commutative Noetherian ring. Vanishing of these functors characterizes the finiteness of \(\mathcal {L}_{C}(S)\)-projective dimension. Applications go in two directions. The first is to characterize when every S-module has a monic (or epic) C-level precover (or preenvelope). The second is to give some criteria for the isomorphism \(\text {Tor}_{i}^{\mathcal {M}\mathcal {L}_{C}}(-,-)\cong \text {Tor}_{i}^{\mathcal {M}\mathcal {F}_{C}}(-,-)\) between the bifunctors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号