首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
A subgroup H of a finite group G is quasinormal in G if it permutes with every subgroup of G. A subgroup H of a finite group G is \(\mathfrak {F}_{hq}\)-supplemented in G if G has a quasinormal subgroup N such that HN is a Hall subgroup of G and \((H\cap N)H_{G}/ H_{G} \le Z_{\mathfrak {F}}(G/H_{G})\), where \(H_{G}\) is the core of H in G and \({Z}_{\mathfrak {F}} (G/H_{G})\) is the \(\mathfrak {F}\)-hypercenter of \({G/H}_{G}\). This paper concerns the structure of a finite group G under the assumption that some subgroups of G are \(\mathfrak {F}_{hq}\)-supplemented in G.  相似文献   

2.
For a finite group G, the set of all prime divisors of |G| is denoted by π(G). P. Shumyatsky introduced the following conjecture, which was included in the “Kourovka Notebook” as Question 17.125: a finite group G always contains a pair of conjugate elements a and b such that π(G) = π(〈a, b〉). Denote by \(\mathfrak{Y}\) the class of all finite groups G such that π(H) ≠ π(G) for every maximal subgroup H in G. Shumyatsky’s conjecture is equivalent to the following conjecture: every group from \(\mathfrak{Y}\) is generated by two conjugate elements. Let \(\mathfrak{V}\) be the class of all finite groups in which every maximal subgroup is a Hall subgroup. It is clear that \(\mathfrak{V} \subseteq \mathfrak{Y}\). We prove that every group from \(\mathfrak{V}\) is generated by two conjugate elements. Thus, Shumyatsky’s conjecture is partially supported. In addition, we study some properties of a smallest order counterexample to Shumyatsky’s conjecture.  相似文献   

3.
Let H be a real algebraic group acting equivariantly with finitely many orbits on a real algebraic manifold X and a real algebraic bundle \({\mathcal {E}}\) on X. Let \(\mathfrak {h}\) be the Lie algebra of H. Let \(\mathcal {S}(X,{\mathcal {E}})\) be the space of Schwartz sections of \({\mathcal {E}}\). We prove that \(\mathfrak {h}\mathcal {S}(X,{\mathcal {E}})\) is a closed subspace of \(\mathcal {S}(X,{\mathcal {E}})\) of finite codimension. We give an application of this result in the case when H is a real spherical subgroup of a real reductive group G. We deduce an equivalence of two old conjectures due to Casselman: the automatic continuity and the comparison conjecture for zero homology. Namely, let \(\pi \) be a Casselman–Wallach representation of G and V be the corresponding Harish–Chandra module. Then the natural morphism of coinvariants \(V_{\mathfrak {h}}\rightarrow \pi _{\mathfrak {h}}\) is an isomorphism if and only if any linear \(\mathfrak {h}\)-invariant functional on V is continuous in the topology induced from \(\pi \). The latter statement is known to hold in two important special cases: if H includes a symmetric subgroup, and if H includes the nilradical of a minimal parabolic subgroup of G.  相似文献   

4.
We discuss the proof of Kazhdan and Lusztig of the equivalence of the Drinfeld category \({\mathcal D}({\mathfrak g},\hbar)\) of \({\mathfrak g}\)-modules and the category of finite dimensional \(U_q{\mathfrak g}\)-modules, \(q=e^{\pi i\hbar}\), for \(\hbar\in{\mathbb C}\setminus{\mathbb Q}^*\). Aiming at operator algebraists the result is formulated as the existence for each \(\hbar\in i{\mathbb R}\) of a normalized unitary 2-cochain \({\mathcal F}\) on the dual \(\hat G\) of a compact simple Lie group G such that the convolution algebra of G with the coproduct twisted by \({\mathcal F}\) is *-isomorphic to the convolution algebra of the q-deformation G q of G, while the coboundary of \({\mathcal F}^{-1}\) coincides with Drinfeld’s KZ-associator defined via monodromy of the Knizhnik–Zamolodchikov equations.  相似文献   

5.
Let A and B be unital Banach algebras and let M be a unital Banach A,B-module. Forrest and Marcoux [6] have studied the weak amenability of triangular Banach algebra \(\mathcal{T} = \left[ {_B^{AM} } \right]\) and showed that T is weakly amenable if and only if the corner algebras A and B are weakly amenable. When \(\mathfrak{A}\) is a Banach algebra and A and B are Banach \(\mathfrak{A}\)-module with compatible actions, and M is a commutative left Banach \(\mathfrak{A}\)-A-module and right Banach \(\mathfrak{A}\)-B-module, we show that A and B are weakly \(\mathfrak{A}\)-module amenable if and only if triangular Banach algebra T is weakly \(\mathfrak{T}\)-module amenable, where \(\mathfrak{T}: = \{ [^\alpha _\alpha ]:\alpha \in \mathfrak{A}\} \).  相似文献   

6.
7.
We examine the structure of the Levi component MA in a minimal parabolic subgroup \(P = MAN\) of a real reductive Lie group G and work out the cases where M is metabelian, equivalently where \(\mathfrak {p}\) is solvable. When G is a linear group we verify that \(\mathfrak {p}\) is solvable if and only if M is commutative. In the general case M is abelian modulo the center \(Z_G\) , we indicate the exact structure of M and P, and we work out the precise Plancherel Theorem and Fourier Inversion Formulae. This lays the groundwork for comparing tempered representations of G with those induced from generic representations of P.  相似文献   

8.
Consider the restriction of an irreducible unitary representation π of a Lie group G to its subgroup H. Kirillov’s revolutionary idea on the orbit method suggests that the multiplicity of an irreducible H-module ν occurring in the restriction π|H could be read from the coadjoint action of H on \(\mathcal {O}^{G} \cap \text {pr}^{-1}({\mathcal {O}}^{H})\), provided π and ν are ‘geometric quantizations’ of a G-coadjoint orbit \(\mathcal {O}^{G}\) and an H-coadjoint orbit \(\mathcal {O}^{H}\), respectively, where \(\text {pr} \colon \sqrt {-1}\mathfrak {g}^{\ast } \to \sqrt {-1}\mathfrak {h}^{\ast }\) is the projection dual to the inclusion \(\mathfrak {h} \subset \mathfrak {g}\) of Lie algebras. Such results were previously established by Kirillov, Corwin and Greenleaf for nilpotent Lie groups. In this article, we highlight specific elliptic orbits \(\mathcal {O}^{G}\) of a semisimple Lie group G corresponding to highest weight modules of scalar type. We prove that the Corwin–Greenleaf number \(\sharp (\mathcal {O}^{G} \cap \text {pr}^{-1}({\mathcal {O}}^{H}))/H\) is either zero or one for any H-coadjoint orbit \(\mathcal {O}^{H}\), whenever (G,H) is a symmetric pair of holomorphic type. Furthermore, we determine the coadjoint orbits \(\mathcal {O}^{H}\) with nonzero Corwin–Greenleaf number. Our results coincide with the prediction of the orbit philosophy, and can be seen as ‘classical limits’ of the multiplicity-free branching laws of holomorphic discrete series representations (Kobayashi [Progr. Math. 2007]).  相似文献   

9.
10.
Let M 0=G 0/H be a (pseudo)-Riemannian homogeneous spin manifold, with reductive decomposition \(\mathfrak {g}_{0}=\mathfrak {h}+\mathfrak {m}\) and let S(M 0) be the spin bundle defined by the spin representation \(\tilde{ \operatorname {Ad}}:H\rightarrow \mathrm {GL}_{\mathbb {R}}(S)\) of the stabilizer H. This article studies the superizations of M 0, i.e. its extensions to a homogeneous supermanifold M=G/H whose sheaf of superfunctions is isomorphic to the sheaf of sections of Λ(S *(M 0)). Here G is the Lie supergroup associated with a certain extension of the Lie algebra of symmetry \(\mathfrak {g}_{0}\) to an algebra of supersymmetry \(\mathfrak {g}=\mathfrak {g}_{\overline {0}}+\mathfrak {g}_{\overline {1}}=\mathfrak {g}_{0}+S\) via the Kostant-Koszul construction. Each algebra of supersymmetry naturally determines a flat connection \(\nabla^{\mathcal {S}}\) in the spin bundle S(M 0). Killing vectors together with generalized Killing spinors (i.e. \(\nabla^{\mathcal {S}}\)-parallel spinors) are interpreted as the values of appropriate geometric symmetries of M, namely even and odd Killing fields. An explicit formula for the Killing representation of the algebra of supersymmetry is obtained, generalizing some results of Koszul. The generalized spin connection \(\nabla^{\mathcal {S}}\) defines a superconnection on M, via the super-version of a theorem of Wang.  相似文献   

11.
Let G be a reductive algebraic group over an algebraically closed field of characteristic zero, and let \(\mathfrak{h}\) be an algebraic subalgebra of the tangent Lie algebra \(\mathfrak{g}\) of G. We find all subalgebras \(\mathfrak{h}\) that have no nontrivial characters and whose centralizers \(\mathfrak{U}(\mathfrak{g})^\mathfrak{h} \) and \(P(\mathfrak{g})^\mathfrak{h} \) in the universal enveloping algebra \(\mathfrak{U}(\mathfrak{g})\) and in the associated graded algebra \(P(\mathfrak{g})\), respectively, are commutative. For all these subalgebras, we prove that \(\mathfrak{U}(\mathfrak{g})^\mathfrak{h} = \mathfrak{U}(\mathfrak{h})^\mathfrak{h} \otimes \mathfrak{U}(\mathfrak{g})^\mathfrak{g} \) and \(P(\mathfrak{g})^\mathfrak{h} = P(\mathfrak{h})^\mathfrak{h} \otimes P(\mathfrak{g})^\mathfrak{g} \). Furthermore, we obtain a criterion for the commutativity of \(\mathfrak{U}(\mathfrak{g})^\mathfrak{h} \) in terms of representation theory.  相似文献   

12.
13.
Let \(\mathfrak {M}\) be a von Neumann algebra, and let \(\mathfrak {T}:\mathfrak {M} \rightarrow \mathfrak {M}\) be a bounded linear map satisfying \(\mathfrak {T}(P^{2}) = \mathfrak {T}(P)P + \Psi (P,P)\) for each projection P of \(\mathfrak {M}\), where \(\Psi :\mathfrak {M} \times \mathfrak {M} \rightarrow \mathfrak {M}\) is a bi-linear map. If \(\Psi \) is a bounded l-semi Hochschild 2-cocycle, then \(\mathfrak {T}\) is a left centralizer associated with \(\Psi \). By applying this conclusion, we offer a characterization of left \(\sigma \)-centralizers, generalized derivations and generalized \(\sigma \)-derivations on von Neumann algebras. Moreover, it is proved that if \(\mathfrak {M}\) is a commutative von Neumann algebra and \(\sigma :\mathfrak {M} \rightarrow \mathfrak {M}\) is an endomorphism, then every bi-\(\sigma \)-derivation \(D:\mathfrak {M} \times \mathfrak {M} \rightarrow \mathfrak {M}\) is identically zero.  相似文献   

14.
Let \(\mathcal{F}\) be a class of groups and G a finite group. We call a set Σ of subgroups of G a G-covering subgroup system for  \(\mathcal{F}\) if \(G\in \mathcal{F}\) whenever \(\Sigma \subseteq \mathcal{F}\). Let p be any prime dividing |G| and P a Sylow p-subgroup of G. Then we write Σ p to denote the set of subgroups of G which contains at least one supplement to G of each maximal subgroup of P. We prove that the sets Σ p and Σ p ∪Σ q , where qp, are G-covering subgroup systems for many classes of finite groups.  相似文献   

15.
Let G be a finite group. A subgroup H of G is s-permutable in G if H permutes with every Sylow subgroup of G. A subgroup H of G is called an \(\mathcal {SSH}\)-subgroup in G if G has an s-permutable subgroup K such that \(H^{sG} = HK\) and \(H^g \cap N_K (H) \leqslant H\), for all \(g \in G\), where \(H^{sG}\) is the intersection of all s-permutable subgroups of G containing H. We study the structure of finite groups under the assumption that the maximal or the minimal subgroups of Sylow subgroups of some normal subgroups of G are \(\mathcal {SSH}\)-subgroups in G. Several recent results from the literature are improved and generalized.  相似文献   

16.
Miloš S. Kurilić 《Order》2017,34(2):235-251
For a partial order \(\mathbb {P}\) having infinite antichains by \(\mathfrak {a}(\mathbb {P})\) we denote the minimal cardinality of an infinite maximal antichain in \(\mathbb {P}\) and investigate how does this cardinal invariant of posets behave in finite products. In particular we show that \(\min \{ \mathfrak {a}(\mathbb {P}),\mathfrak {p} (\text {sq} \mathbb {P}) \} \leq \mathfrak {a} (\mathbb {P}^{n} ) \leq \mathfrak {a} (\mathbb {P})\), for all \(n\in \mathbb {N}\), where \(\mathfrak {p} (\text {sq} \mathbb {P})\) is the minimal size of a centered family without a lower bound in the separative quotient of the poset \(\mathbb {P}\), or \(\mathfrak {p} (\text {sq} \mathbb {P})=\infty \), if there is no such family. So we have \(\mathfrak {a} (\mathbb {P} \times \mathbb {P})=\mathfrak {a} (\mathbb {P})\) whenever \(\mathfrak {p} (\text {sq} \mathbb {P})\geq \mathfrak {a} (\mathbb {P})\) and we show that, in addition, this equality holds for all posets obtained from infinite Boolean algebras of size ≤ø 1 by removing zero, all reversed trees, all atomic posets and, in particular, for all posets of the form \(\langle \mathcal {C} ,\subset \rangle \), where \(\mathcal {C}\) is a family of nonempty closed sets in a compact T 1-space containing all singletons. As a by-product we obtain the following combinatorial statement: If X is an infinite set and {A i ×B i :iI} an infinite partition of the square X 2, then at least one of the families {A i :iI} and {B i :iI} contains an infinite partition of X.  相似文献   

17.
Gagola and Lewis proved that a finite group G is nilpotent if and only if \(\chi (1)^2\) divides |G :  \(\mathrm{Ker}\) \(\chi |\) for all irreducible characters \(\chi \) of G. In this paper, we prove the following generalization that a finite group G is nilpotent if and only if \(\chi (1)^2\) divides |G :  \(\mathrm{Ker}\) \(\chi |\) for all monolithic characters \(\chi \) of G.  相似文献   

18.
In this paper, we study free probability on tensor product algebra \(\mathfrak {M} = M\,\otimes _{\mathbb {C}}\,{\mathcal {A}}\) of a \(W^{*}\)-algebra M and the algebra \({\mathcal {A}}\), consisting of all arithmetic functions equipped with the functional addition and the convolution. We study free-distributional data of certain elements of \(\mathfrak {M}\), and study freeness on \(\mathfrak {M}\), affected by fixed primes.  相似文献   

19.
We construct two new G-equivariant rings: \(\mathcal{K}(X,G)\), called the stringy K-theory of the G-variety X, and \(\mathcal{H}(X,G)\), called the stringy cohomology of the G-variety X, for any smooth, projective variety X with an action of a finite group G. For a smooth Deligne–Mumford stack \(\mathcal{X}\), we also construct a new ring \(\mathsf{K}_{\mathrm{orb}}(\mathcal{X})\) called the full orbifold K-theory of \(\mathcal{X}\). We show that for a global quotient \(\mathcal{X} = [X/G]\), the ring of G-invariants \(K_{\mathrm{orb}}(\mathcal{X})\) of \(\mathcal{K}(X,G)\) is a subalgebra of \(\mathsf{K}_{\mathrm{orb}}([X/G])\) and is linearly isomorphic to the “orbifold K-theory” of Adem-Ruan [AR] (and hence Atiyah-Segal), but carries a different “quantum” product which respects the natural group grading.We prove that there is a ring isomorphism \(\mathcal{C}\mathbf{h}:\mathcal{K}(X,G)\to\mathcal{H}(X,G)\), which we call the stringy Chern character. We also show that there is a ring homomorphism \(\mathfrak{C}\mathfrak{h}_\mathrm{orb}:\mathsf{K}_{\mathrm{orb}}(\mathcal{X}) \rightarrow H^\bullet_{\mathrm{orb}}(\mathcal{X})\), which we call the orbifold Chern character, which induces an isomorphism \(Ch_{\mathrm{orb}}:K_{\mathrm{orb}}(\mathcal{X})\rightarrow H^\bullet_{\mathrm{orb}}(\mathcal{X})\) when restricted to the sub-algebra \(K_{\mathrm{orb}}(\mathcal{X})\). Here \(H_{\mathrm{orb}}^\bullet(\mathcal{X})\) is the Chen–Ruan orbifold cohomology. We further show that \(\mathcal{C}\mathbf{h}\) and \(\mathfrak{C}\mathfrak{h}_\mathrm{orb}\) preserve many properties of these algebras and satisfy the Grothendieck–Riemann–Roch theorem with respect to étale maps. All of these results hold both in the algebro-geometric category and in the topological category for equivariant almost complex manifolds.We further prove that \(\mathcal{H}(X,G)\) is isomorphic to Fantechi and Göttsche’s construction [FG, JKK]. Since our constructions do not use complex curves, stable maps, admissible covers, or moduli spaces, our results greatly simplify the definitions of the Fantechi–Göttsche ring, Chen–Ruan orbifold cohomology, and the Abramovich–Graber–Vistoli orbifold Chow ring.We conclude by showing that a K-theoretic version of Ruan’s Hyper-Kähler Resolution Conjecture holds for the symmetric product of a complex projective surface with trivial first Chern class.  相似文献   

20.
Let \(\mathfrak{q}\)(n) be a simple strange Lie superalgebra over the complex field ?. In a paper by A.Ayupov, K.Kudaybergenov (2016), the authors studied the local derivations on semi-simple Lie algebras over ? and showed the difference between the properties of local derivations on semi-simple and nilpotent Lie algebras. We know that Lie superalgebras are a generalization of Lie algebras and the properties of some Lie superalgebras are similar to those of semi-simple Lie algebras, but \(\mathfrak{p}\)(n) is an exception. In this paper, we introduce the definition of the local superderivation on \(\mathfrak{q}\)(n), give the structures and properties of the local superderivations of \(\mathfrak{q}\)(n), and prove that every local superderivation on \(\mathfrak{q}\)(n), n > 3, is a superderivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号