首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper we derive the Forchheimer law via the theory of homogenization. In particular, we study the nonlinear correction to Darcy's law due to inertial effects on the flow of a Newtonian fluid in rigid porous media. A general formula for this correction term is derived directly from the Navier–Stokes equation via homogenization. Unlike other studies based on the same approach that concluded for the nonlinear correction to be cubic in velocity for isotropic media, the present work shows that the nonlinear correction is quadratic. An example is constructed to illustrate our theory. In this example, the analytic solution to the Navier–Stokes equation is obtained and is utilized to show the validity of the quadratic correction. Both incompressible and compressible fluids are considered.  相似文献   

2.
Derivation of the Forchheimer Law Via Matched Asymptotic Expansions   总被引:1,自引:0,他引:1  
Matched asymptotics are used formally in the linearized Navier–Stokes equations, the so-called Oseen approximation, to derive a nonlinear law for the flow of a single-phase, incompressible Newtonian fluid through a rigid porous medium. A suitable choice of the linear term gives, to order a Forchheimer-type law.  相似文献   

3.
High Forchheimer number flow through a rigid porous medium is numerically analysed by means of the volumetric averaging concept. The microscopic flow mechanisms, which must be known in order to understand the macroscopic flow phenomena, are studied by utilising a periodic diverging-converging representative unit cell (RUC). The detailed information for the microscopic flow field, in association with the locally averaged momentum balance, makes it possible to quantitatively demonstrate that the microscopic inertial phenomenon, which leads to distorted velocity and pressure fields, is the fundamental reason for the onset of nonlinear (non-Darcy) effects as velocity increases. The hydrodynamic definitions for Darcy's law permeabilityk, the inertial coefficient and Forchheimer number Fo are obtained by applying the averaging theorem to the pore level Navier-Stokes equations. Finally, these macroscopic parameters are numerically calculated at various combinations of micro-geometry and flow rate, and graphically correlated with the relevant microscopic parameters.Nomenclature a i body force acceleration (m/s2) - A viscous integral term defined in (4.6) - A f area of entrance and exist of RUC (m2) - A fs interfacial area between the fluid and solid phases (m2) - B pressure integral term defined in (4.4) - d throat diameter of RUC (m) - D pore diameter of RUC (m) - Fo Forchheimer number defined in (4.1) and (4.10) - g gravitational acceleration (m/s2) - i, j microscopic unit vector for RUC - k Darcy's law permeability (m2) - k v velocity dependent permeability defined in (4.1) (m2) - L length of a unit cell (m) - L p pore length of RUC (m) - L t throat length of RUC (m) - n unit outwardly directed vector for the fluid phase - p microscopic fluid pressure (N/m2) - P macroscopic fluid pressure (N/m2) - en mean pressure at entrance of RUC (N/m2) - ex mean pressure at exit of RUC (N/m2) - r i,r coordinate on the macroscopic scale (m) - Re d Reynolds number defined in (4.5) - u i,u microscopic velocity (m/s) - specific discharge (m/s) - d mean velocity at the throat of RUC (m/s) - v microscopic velocity (m/s) - V b representative elementary volume (REV) (m3) - V f volume occupied by the fluid within REV (m3) - V s volume occupied by the solid within REV (m3) - x i,x coordinate on the microscopic scale (m) - X i,X coordinate on the macroscopic scale (m) Greek the inertia coefficient (1/m) - viscosity coefficient (Ns/m2) - i microscopic unit vector - areosity at the entrance and the exit cross-section of RUC - fluid density (kg/m3) - porosity - f a general property of the fluid phase Symbols f intrinsic phase average - the fluctuating part of f - the mean value of f - f * the dimensionless value of f  相似文献   

4.
A new analytical derivation for momentum transport during laminar flow through granular porous media is discussed and some of its implied results described. In the very low Reynolds number regime fully developed laminar flow is assumed and in the higher laminar Reynolds number regime the Forchheimer (non-Darcy) effect is modelled through reference to form drag induced by the solid constituents of the porous medium. The results are compared to the Ergun equation, which is empirically based on experimental measurements, and the correspondence is shown to be remarkably close.  相似文献   

5.
We are examining the classical problem of unsteady flow in a phreatic semi-infinite aquifer, induced by sudden rise or drawdown of the boundary head, by taking into account the influence of the inertial effects. We demonstrate that for short times the inertial effects are dominant and the equation system describing the flow behavior can be reduced to a single ordinary differential equation. This equation is solved both numerically by the Runge-Kutta method and analytically by the Adomian’s decomposition approach and an adequate polynomial-exponential approximation as well. The influence of the viscous term, occurring for longer times, is also taken into account by solving the full Forchheimer equation by a finite difference approach. It is also demonstrated that as for the Darcian flow, for the case of small fluctuations of the water table, the computation procedure can be simplified by using a linearized form of the mass balance equation. Compact analytical expressions for the computation of the water stored or extracted from an aquifer, including viscous corrections are also developed.  相似文献   

6.
The spatial-temporal averaging procedure is considered with a nonhomogeneous distribution of elementary domains in the spatial-temporal space and the probabilistic interpretation of the ST-averaging is also given. Several averaging theorems and corollaries about the averages of spatial and temporal derivatives are presented and rigorously proved which allow elementary domain to vary in space and time. The macroscopic transport equation in the most general condition and the simplified macroscopic equation under the special form of distributions are developed which may be reduced to the classical macroscopic transport equation as the spatial-temporal average degenerates into the volume average.  相似文献   

7.
The flow of an adiabatic gas through a porous media is treated analytically for steady one- and two-dimensional flows. The effect on a compressible Darcy flow by inertia and Forchheimer terms is studied. Finally, wave solutions are found which exhibit a cut-off frequency and a phase shift between pressure and velocity of the gas, with the velocity lagging behind the pressure.Nomenclature A area of tube for one-dimensional flow - B drag coefficient associated with Forchheimer term - c speed of sound - M Mach number - p * gas pressure - p dimensionless gas pressure - s coordinate along the axis of tube - t * time variable - t dimensionless time variable - V* gas velocity in the porous media - V dimensionless gas velocity Greek Letters ratio of specific heat capacities - phase angle between gas pressure and velocity for linear waves - parameter indicating the importance of the inertia term - viscosity - p natural frequency of the porous media - * gas density - dimensionless gas density - parameter indicating the importance of the Forchheimer term - porosity of porous media - velocity potential - stream function  相似文献   

8.
9.
《Comptes Rendus Mecanique》2017,345(9):660-669
The empirical Darcy law describing flow in porous media, whose convincing theoretical justification was proposed almost 130 years after its original publication in 1856, has however been extended to account for particular flow conditions. This article reviews historical developments aimed at including inertial and slip effects (respectively, when the Reynolds and Knudsen numbers are not exceedingly small compared to unity). Despite the early empirical extensions to include inertia and slip effects, it is striking to observe that clear formal derivations of physical models to account for these effects were reported only recently.  相似文献   

10.
This paper presents an evaluation of the capability of turbulence models available in the commercial CFD code FLUENT 6.0 for their application to hydrofoil turbulent boundary layer separation flow at high Reynolds numbers. Four widely applied two‐equation RANS turbulence models were assessed through comparison with experimental data at Reynolds numbers of 8.284×106 and 1.657×107. They were the standard k–εmodel, the realizable k–εmodel, the standard k–ωmodel and the shear‐stress‐transport (SST) k–ωmodel. It has found that the realizable k–εturbulence model used with enhanced wall functions and near‐wall modelling techniques, consistently provides superior performance in predicting the flow characteristics around the hydrofoil. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

11.
It is shown, by the use of the symmetry group of a fluid, that the stress in an elastic fluid depends on the current value of the deformation gradient through the absolute value of the determinant of the deformation gradient, whereas in a simple fluid it depends on this value of the determinant and the history of the relative deformation gradient and nothing else. This derivation is then used to show some of the errors in the criticisms made about the work of Noll. Additionally, a lacuna in Noll's derivation is removed to overcome the only valid criticism made about this theory of simple fluids.  相似文献   

12.
13.
The modelling of mass transfer in porous media presenting capacitance effects by a dispersion-convection equation for the mobile fluid and a diffusion equation for the stagnant fluid has been shown (Piquemal, 1992) to be erroneous in the general case, because it is assumed that the mean concentration of the flowing fluid equals the point concentration at the boundary of the stagnant fluid. This boundary condition cannot be realized. This paper gives the conditions that allows the use of this kind of model with an acceptable approximation. The problem has been solved in the case of two schematic structures: the first is a cylindrical tube with stagnant pockets in its wall, the second a stratified medium. The characteristic lengths of the mobile and immobile domain must obey a criterion in which the porous medium characteristics and the flow velocity appear.  相似文献   

14.
Scattering of surface waves by a cylindrical cavity at the surface of a homogenous, isotropic, linearly elastic half-space is analyzed in this paper. In the usual manner, the scattered field is shown to be equivalent to the radiation from a distribution of tractions, obtained from the incident wave on the surface of the cavity. For the approximation used in this paper, these tractions are shifted to tractions applied to the projection of the cavity on the surface of the half-space. The radiation of surface waves from a normal and a tangential line load, recently determined by the use of the reciprocity theorem, is employed to obtain the field scattered by the cavity from the superposition of displacements due to the distributed surface tractions. The vertical displacement at some distance from the cavity is compared with the solution of the scattering problem obtained by the boundary element method (BEM) for various depths and widths of the cavity. Comparisons between the analytical and BEM results are graphically displayed. The limitations of the approximate approach are discussed based on the comparisons with the BEM results.  相似文献   

15.
传统的力学实验已无法满足研究生创新性实验教学的需要。为了使研究生在科学研究中掌握实验分析的基本方法和技能,本文基于Hopkinson压杆加载技术建立了一套高速切削实验系统。该实验系统作为一个科研平台,能够实现切削过程的瞬态冻结并完成变形场和切削力的实时测量,可为高速切削机理研究提供基础实验数据。同时,该实验系统也是一个综合性的实验平台。基于该平台,可以完成金相分析、光栅光纤测力、变形场测量以及塑性本构分析等力学实验教学。高速切削实验平台将力学实验与科学研究相结合,有利于培养研究生独立分析与研究的能力,为研究生未来的科研工作打下基础。  相似文献   

16.
The shape of long, trailing cavities behind three-dimensional headforms is discussed. The case of a flat elliptic wing is specifically treated. Three distinct shape regimes are found: quasi-planar, long-flat, spheroidal. These appear in successively higher speed ranges (lower cavitation numbers, ). It is argued that the cavities may be replaced by surrogates in the form of slender ellipsoids. The pressures on these are almost constant and correspond to a cavitation number equal to twice their longitudinal added mass coefficient, k1. A heuristic theory based on kinetic energy fields is given, relating k1 to the product of headform drag and cavity length. This theory correlates with an exact theory in the same form given by Garabedian for axi-symmetric cones and also with its extension to planar flows. Results are given here for the shape of the cavity behind an elliptic wing of any aspect ratio, given drag, and cavitation number. Specific formulae are given in the form, = f (CD/AR), for the transition between the quasi-planar and long-flat regime, and the long-flat and spheroidal regime.  相似文献   

17.
The results of an experimental and theoretical investigation of the interaction between a surface electric discharge and a supersonic air flow in a constant cross-section channel are given. The features of the generation of the surface discharge in the flow are described. A model of the interaction is proposed. The regime of gasdynamic screening of a mechanical obstacle on the channel wall is investigated. Data on the change in the main flow parameters as a result of the generation of a surface discharge are given. The experimental results are compared with the results of calculations based on a simplified model of the interaction.  相似文献   

18.
Huilgol's paper [1] is discussed critically. It is shown that there are significant errors in each section of the paper. His argument depends critically on a refusal to recognize that when a statement is made that a functional of a tensor function is invariant under a group of transformations, these transformations must be constants and that otherwise the statement is meaningless. Furthermore, he consistently ignores the contradictions to which this refusal leads.  相似文献   

19.
In the present paper the rarefied gas flow caused by the sudden change of the wall temperature and the Rayleigh problem are simulated by the DSMC method which has been validated by experiments both in global flow field and velocity distribution function level. The comparison of the simulated results with the accurate numerical solution of the B-G-K model equation shows that near equilibrium the B-G-K equation with corrected collision frequency can give accurate result but as farther away from equilibrium the B-G-K equation is not accurate. This is for the first time that the error caused by the B-G-K model equation has been revealed. The project supported by the National Natural Science Foundation of China (19772059, 19889209)  相似文献   

20.
This paper presents manufactured solutions (MSs) for some well‐known eddy‐viscosity turbulence models, viz. the Spalart & Allmaras one‐equation model and the TNT and BSL versions of the two‐equation k–ω model. The manufactured flow solutions apply to two‐dimensional, steady, wall‐bounded, incompressible, turbulent flows. The two velocity components and the pressure are identical for all MSs, but various alternatives are considered for specifying the eddy‐viscosity and other turbulence quantities in the turbulence models. The results obtained for the proposed MSs with a second‐order accurate numerical method show that the MSs for turbulence quantities must be constructed carefully to avoid instabilities in the numerical solutions. This behaviour is model dependent: the performance of the Spalart & Allmaras and k–ω models is significantly affected by the type of MS. In one of the MSs tested, even the two versions of the k–ω model exhibit significant differences in the convergence properties. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号