首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel flow injection method with resonance light scattering detection was developed for the determination of total protein concentrations. This method is based on the enhancement of RLS signals from Methyl Blue (MB) by protein. The enhanced RLS intensities at 333 nm, in a pH 4.1 acidic aqueous solution, were proportional to the protein concentration over the range 2.0-37.3 and 1.0-36.0 microg ml-1 for human serum albumin (HSA) and bovine serum albumin (BSA), respectively. The corresponding limits of detection (3sigma) of 45 ng ml-1 for HSA and 80 ng ml-1 for BSA were attained. The method was successfully applied to the quantification of total proteins in human serum samples, the maximum relative error is less than 1% and the recovery is between 98% and 102%. The sample throughput was 60 h-1.  相似文献   

2.
A novel method for the determination of proteins by using tetracarboxy manganese(II) phthalocyanine (MnC4Pc) as a resonance light scattering (RLS) probe has been developed. At pH 3.0 Britton-Robinson (B-R) buffer solution, the RLS intensity of MnC4Pc at 385 nm is greatly enhanced in the presence of proteins. The effects of pH, reaction time, concentration of MnC4Pc and interfering substances on the enhanced RLS intensity are investigated, respectively. Under optimal conditions, the linear ranges of the calibration curves are 0-2.00 microg mL(-1) for bovine serum albumin (BSA) and human serum albumin (HSA), 0.0-1.75 microg mL(-1) for human-IgG and ovalbumin, with a detection limit of 16.37 ng mL(-1) BSA, 17.62 ng mL(-1) HSA, 19.41 ng mL(-1) human-IgG and 20.72 ng mL(-1) ovalbumin. The method has been applied to the determination of total proteins in human serum samples collected from a hospital and the results are in good agreement with those reported by the hospital.  相似文献   

3.
Dong L  Jia R  Li Q  Chen X  Hu Z 《The Analyst》2001,126(5):707-711
The determination of proteins with tetrasodium 2-(3,6-disulfo-8-hydroxynaphthylazo)-1,8-dihydroxynaphthalene-3,6-disulfonate (Beryllon II) by Rayleigh light scattering (RLS) was studied. The weak RLS of the Beryllon II-bovine serum albumin (BSA) complex can be greatly enhanced by the addition of Al3+ in the pH range 5.6-7.2; there was a maximum RLS platform at 400-420 nm. Based on the reaction between Beryllon II, Al3+ and proteins, a new method for the determination of proteins was developed. This method is very sensitive [0.20-41.42 micrograms ml-1 for BSA and 0.18-48.15 micrograms ml-1 for human serum albumen (HSA)], rapid (< 2 min), simple (one step) and tolerant towards most interfering substances. The effects of different surfactants were also examined. Four samples of protein in human serum were determined; the maximum relative error was no more than 5% and the recovery was 96-105%.  相似文献   

4.
Jia RP  Dong LJ  Li QF  Chen XG  Hu ZD 《Talanta》2002,57(4):693-700
A simple, sensitive and selective method has been developed for the determination of protein using resonance light scattering (RLS) technique. The method is based on the interaction of protein and arsenazo-DBC-Al(3+) in the pH range of 5.0-7.0, which causes a substantial enhancement of the resonance scattering signal of arsenazo-DBC-Al(3+) in the wavelength range of 300-550 nm with the maximum RLS platform at 405-420 nm. With this method, 2.50-50.00 mug ml(-1) of bovine serum albumin (BSA) and 2.50-60.00 mug ml(-1) of human serum albumin (HSA) can be determined, and the detection limits, calculated three times the standard deviation (S.D.) of six blank measurements, for BSA and HSA were 123.4 and 89.6 ng ml(-1), respectively. Moreover, the method is free from interference from many amino acids and metal ions. The method, with high sensitivity, selectivity and reproducibility, was satisfactorily applied to the determination of total protein in human serum samples. Mechanism studies indicated that arsenazo-DBC-Al(3+) could bind to BSA depending mainly on electrostatic forces, which results in enhanced RLS in the arsenazo-DBC-Al(3+)-protein system.  相似文献   

5.
The determination of proteins with arsenazo-DBN and Al3+ by Rayleigh light-scattering (RLS) is described. The weak RLS of arsenazo-DBN and BSA can be enhanced greatly by addition of Al3+ in the pH range 5.3-7.0; this resulted in two enhanced RLS signals at 420-440 nm and 460-480 nm. The reaction between arsenazo-DBN, Al3+, and proteins was studied and a new method was developed for quantitative determination of proteins. This method is very sensitive (0.34-41.71 microg mL(-1) for bovine serum albumin, BSA, and 0.29-53.41 microg mL(-1) for human serum albumin, HSA), rapid (< 2 min), simple (one step), and tolerant of most interfering substances. The effects of different surfactants were also examined. When these proteins were determined in four human serum samples the maximum relative error was not more than 2% and the recovery was between 97 and 103%.  相似文献   

6.
Cao QE  Ding Z  Fang R  Zhao X 《The Analyst》2001,126(8):1444-1448
The resonance Rayleigh light-scattering (RRLS) technique was used to develop a simple, sensitive and selective method for the determination of proteins. The method is based on the interaction between proteins and Pyrogallol Red (PR) in the pH range 3.6-4.2, which causes a substantial enhancement of the resonance scattering signal of PR in the wavelength range 300-450 nm with the maximum scattering peak located at 347 nm. With this method, 0.25-13 microg ml(-1) of bovine serum albumin (BSA), 0.25-10 microg ml(-1) of human serum albumin (HSA) and 0.25-13 microg ml(-1) of human immunoglobulin G (IgG) can be determined, and the detection limits, calculated as three times the standard deviation of nine blank measurements, for BSA, HAS and IgG were 51, 48 and 57 microg l(-1), respectively. Moreover, the method shows almost no protein-to-protein variability and is free from interference from many amino acids and metal ions. The method, with high sensitivity, selectivity and reproducibility, was satisfactorily applied to the determination of the total protein in human serum and saliva samples. Mechanism studies indicated that PR can bind to BSA depending mainly on electrostatic forces, and this interaction can encourage the J-aggregation of PR, which results in enhanced Rayleigh light-scattering in the PR-protein system.  相似文献   

7.
As a resonance light scattering (RLS) probe, the polyelectrolyte polymethacrylic acid (PMAA) was applied in this assay. The bovine serum albumin (BSA) and human serum albumin (HSA) were determined by the electrostatic interaction of PMAA and proteins. At pH 3.8 Na(2)HPO(4)-citric acid buffer solution, the RLS intensities of PMAA-BSA (HSA) system were greatly enhanced. The characteristic peaks were appeared at the wavelength 320, 546 and 594 nm. The optimization conditions of the reaction were also examined and selected. Under the selected conditions, the RLS intensities were proportional to the protein concentrations in the range of (0.0200-2.00) x 10(-6) mol/L for BSA and (0.0200-2.40) x 10(-6) mol/L for HSA. The influences of some foreign substances were also examined. The synthetic samples containing proteins and some real samples were analyzed and the results obtained were satisfactory.  相似文献   

8.
By means of the resonance light scattering (RLS) technique, a new method was developed to determine the bovine serum albumin (BSA) and human serum albumin (HSA) by the interaction of serum albumin with poly(diallyldimethylammonium chloride) (PDDA). At Tris-NaOH buffer solution, the RLS intensity of serum albumin at the wavelength 320, 550 and 590 nm was obviously enhanced in the presence of PDDA. The influences of some experimental factors, including incubation time, addition sequence of reagents, pH value, concentration of PDDA and foreign substances, on the enhancement of the RLS intensity were examined. The optimum conditions of the experiment were selected. Under the selected experimental condition, the enhanced RLS intensities were directly proportional to the concentrations in the range of (0.0250-2.75)x10(-6) mol/L for BSA and (0.0235-1.17)x10(-6) mol/L for HSA. The detection limits (S/N=3) were 8.40x10(-9) mol/L for BSA and 7.39x10(-9) mol/L for HSA. The synthetic samples were analysed and the results obtained were satisfactory.  相似文献   

9.
Based on the measurement of the enhancement of resonance light scattering (RLS) of fuchsine acid (FSA) by proteins, a novel sensitive assay of proteins in body fluid samples has been developed. Proteins, including bovine serum albumin (BSA), human serum albumin (HSA), pepsin (Pep), alpha-chymotrypsin (Chy), lysozyme (Lys), and cellulase (Cel), can bind to fuchsine acid (FSA), resulting in enhanced RLS signals at 277.0 nm. Linear relationships between the enhanced RLS intensity and the protein concentration were measured at different concentration of FSA, and the limits of detection for BSA, HSA, and Lys were found to lie in the nanogram range.  相似文献   

10.
在酸性条件下,铬黑T、钼酸铵与蛋白质形成聚合物,使体系的共振光散射明显增强。据此建立了利用共振光散射技术测定总蛋白含量的新方法。在最佳条件下,体系的最大散射峰位于555nm处。共振光散射增强的程度与蛋白质的浓度呈良好的线性关系。牛血清白蛋白和人血清白蛋白的线性范围分别为0.20~10.0μg/mL和0.10~8.0μg/mL,检出限为0.050μg/mL和0.039μg/mL。方法已用于人血清样品的分析,并与考马斯亮蓝的测定结果进行了比较,两者无显著性差异。  相似文献   

11.
A new resonance light scattering (RLS) assay of protein is presented. In Tris-NaOH (pH = 10.93) buffer, the RLS of rutin-cetylpyridine bromide (CPB) system can be greatly enhanced by protein, including bovine serum albumin (BSA) and human serum albumin (HSA). The enhanced RLS intensities are in proportion to the concentration of proteins in the range of 5 x 10(-9) to 2.5 x 10(-6) g ml(-1) for BSA and 2.5 x 10(-8) to 3.5 x 10(-6) g ml(-1) for HSA. The detection limits (S/N = 3) are 3.0 ng ml(-1) for BSA and 10.0 ng ml(-1) for HSA. Samples are determined satisfactorily.  相似文献   

12.
This paper describes the development of composite nanoparticles. A novel composite nanoparticle has been prepared by an in situ polymerization method. The nano-CdS has been prepared, then the polymerization of acrylic acid (AA) was carried out by initiator potassium persulfate (KPS) under ultrasonic irradiation. The surface of the composite nanoparticles was covered with abundant carboxylic groups (-COOH). The nanoparticles are water-soluble, stable and biocompatible. Reaction of the composite nanoparticles with proteins results in an enhanced resonance light scattering (RLS) at 380 nm. Based on this, a new resonance light-scattering (RLS) method was developed for the determination of proteins including BSA, HSA and human gamma-IgG. Under the optimum conditions, the enhanced RLS intensity is linearly proportional to the concentration of proteins. The liner range is 0.1-15 microgmL(-1) for HSA, 0.2-20 microgmL(-1) for BSA and 0.1-50.0 microgmL(-1) for human gamma-IgG, respectively. The method has been applied to the determination of the total protein in human serum samples collected from the hospital and the results are in good agreement with those reported by the hospital. This method proved to be very sensitive, rapid, simple and tolerant of most interfering substances.  相似文献   

13.
The interaction of Fast Green FCF (FCF) with proteins (including bovine serum albumin (BSA), human serum albumin (HSA), pepsin (Pep) and alpha-chymotrypsin (Chy), and lysozyme (Lys)) was characterized by enhanced resonance light-scattering (RLS) measurements using a common spectrofluorometer. The enhanced RLS signals of FCF by proteins at 279.0 nm were obtained, and the mechanism of the RLS enhancement was considered in terms of the effects of the pH and ionic strength on the interaction. It was found that the enhanced RLS intensities were in proportion to the concentrations of proteins in the range of nanogram levels, displaying that the present assay is much more sensitive than the reported RLS methods, with the limits of determination being 4.54, 0.6, 22.8, 4.32 and 1.75 ng/ml for BSA, HSA, Pep, Chy, and Lys. respectively.  相似文献   

14.
A simple, highly sensitive and dye-less assay for proteins was reported using a resonance light-scattering (RLS) technique based on the enhanced RLS intensity of beta-cyclodextrin (beta-CD)-sodium dodecylsulfate (SDS)-protein system. Under the optimum conditions, the enhanced RLS intensity is in proportion to the concentration of proteins in the range of 0.01 to 2.3 microg ml(-1) for bovine serum albumin (BSA), 0.01 to 2.0 microg ml(-1) for human serum albumin (HSA), 0.015 to 5.0 microg ml(-1) for gamma-globulin (gamma-G), 0.02 to 3.5 microg ml(-1) for egg albumin (EA), 0.02 to 4.0 microg ml(-1) for pepsin (Pep), and 0.02 to 3.6 microg ml(-1) for alpha-chymotrypsin (Chy). Their detection limits (S/N = 3) are 1.1, 1.6, 2.4, 6.7, 5.4 and 4.2 ng ml(-1), respectively. Synthetic samples and human serum samples were determined satisfactorily, and the results were in reasonable agreement with those obtained by a documented spectrophotometric (Bradford) method.  相似文献   

15.
The polystyrene-acrylic acid (PS-AA) nanoparticles have been prepared by ultrasonic polymerization, characterized by FT-IR and TEM. It is the first report on the determination of proteins with macromolecules nanoparticles of PS-AA by resonance light-scattering (RLS). At pH 6.9, the RLS of macromolecules nanoparticles of PS-AA can be enhanced by proteins. Based on this, a novel quantitative assay of proteins at the nanogram levels has been proposed. At pH 6.9, the RLS signals of PS-AA were greatly enhanced by proteins in the region of 250-700 nm characterized by the peak at 342 nm. Under optimal conditions, the linear ranges of the calibration curves were 0.02-11.0 microgml-1, 0.04-10.0 microgml-1 and 0.03-10.0 microgml-1 for gamma-globulin (gamma-IgG), bovine serum albumin (BSA) and human serum albumin (HSA), respectively. The detection limits were 16.0 ngml-1, 19.0 ngml-1, and 15.0 ngml-1 for gamma-IgG, BSA and HSA, respectively. The method has been applied to the analysis of total proteins in human serum samples collected from the hospital and the results were in good agreement with those reported by the hospital, which indicates that the method presented here is not only sensitive, simple, but also reliable and suitable for practical application.  相似文献   

16.
Functionalized nano-PbS has been prepared and characterized. The functionalized nanoparticles have good dispersibility in water. Reaction of functionalized nano-PbS with γ-globulin (γ-IgG) results an enhanced resonance light scattering (RLS) around 385nm.However, when the content of HSA is lower than 0.5μg/ml^-1 the RLS enhancement is very weak and is nonlinear to concentration of HSA. Based on these results, a new direct quantitative determination method for γ-globulin in blood serum samples without separation is established.Under optimal conditions, the enhanced RLS intensity is in proportion to the γ-IgG concentration in the range 10-500ng/mL. The limit of detection is 2.75ng/mL. This method is proved to be very sensitive, rapid, simple and selective for detection of γ-IgG in blood serum.  相似文献   

17.
It is found that protein and sodium dodecyl sulphonate (SDS) can enhance resonance light scattering (RLS) of curcumin (CU). Based on this phenomenon, a new quantitative method for protein in aqueous solution has been developed. In the BR (pH 3.5) buffer, the RLS intensity of CU-SDS system is greatly enhanced by protein. The enhanced RLS is proportional to the concentration of protein in the range of 0.00020-20.0 microgml(-1) for bovine serum albumin (BSA) and 0.00040-1.0 microgml(-1) for human serum albumin (HSA) and their detection limits are 0.16 and 0.041 ngml(-1), respectively. An actual sample is satisfactorily determined. In addition, the interaction mechanism between protein and CU-SDS is also studied by using multi-techniques such as RLS, absorption spectroscopy and fluorescence, zeta potential assay measurement.  相似文献   

18.
吴飞  朱进  谭克俊 《应用化学》2012,29(8):969-973
研究了牛血清白蛋白(BSA)与全氟辛烷磺酸(PFOS)相互作用的共振光散射(RLS)光谱,建立了PFOS的共振光散射分析方法。 在pH值为4.1的BR缓冲溶液中,全氟辛烷磺酸根阴离子与质子化的BSA通过静电引力和疏水作用形成离子缔合物,引起共振光散射强度(IRLS)显著增强,最大散射波长位于285.0 nm处,增强的散射信号强度与PFOS浓度在0.2~25.0 μmol/L范围内呈线性关系,据此建立了测定PFOS的光散射分析方法,检出限为20.0 nmol/L。 讨论了体系的最佳反应条件及外来物质的干扰,并探讨了反应机理。 建立的共振光散射法用于环境水样中PFOS的测定,RSD≤4.4%。  相似文献   

19.
A new determination method of proteins with the limit of determination at nanogram levels is proposed by using a common spectrofluorimeter to detect intensity of resonance double line scattering (RDLS). Proteins including bovine serum albumin (BSA), human serum albumin (HSA) can combine with morin and cetyltrimethylammonium briomide (CTMAB) in the pH range 7.0-8.0 and produce enhanced RDLS signal at lambda(ex)/lambda(em) 305.0/610.0 nm. Optimization conditions for the morin-protein-CTMAB interaction were tested. In the studied system, BSA/CTMAB/morin = 1:2:3. The association constant of morin with BSA is 5.2 x 10(4). Under the optimum conditions, the linear range is 7.5 x 10(-8)-1.0 x 10(-5) g/ml for BSA, 2.5 x 10(-8)-5.0 x 10(-6) g/ml for HSA. The detection limits (S/N = 3) are 66.0 ng/ml for BSA and 23.0 ng/ml for HSA, respectively. Four synthetic samples were analyzed satisfactorily.  相似文献   

20.
A simple and sensitive method was conducted for the determination of trace amounts of proteins with benzeneazo-8-acetylamino-1-naphthol-3,6-disulfonic acid sodium salt (azophloxine, AP) using a Rayleigh light-scattering (RLS) technique. At pH 2.60 and in the presence of an emulsifier OP microemulsion, the RLS of AP can be greatly enhanced by proteins, owing to the interaction between AP and protein. The enhanced intensity is proportional to the concentration of proteins. Four proteins, including bovine serum albumin (BSA), human serum albumin (HSA), lysozyme (Lys) and gamma globulin (gamma-G) have been tested. For example, the linear range of BSA was 0 - 0.06 microg mL(-1) with detection limits of 2.38 ng mL(-1). The method was applied to the analysis of protein in human urine and penicillin samples with satisfactory results. The relative standard deviation was in all instances less than 4.0%, and the recovery was in the range of 97.5 - 104%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号