首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dependence of the interfacial electron transfer in alizarin-sensitized TiO2 nanoparticles on the sample pH has been examined via transient absorbance spectroscopy in the visible spectral region (443-763 nm). Excitation of the alizarin/TiO2 system with visible pump pulses (lambdaexc = 500 nm) leads to a very fast electron injection (tauinj < 100 fs) over a wide pH range. Back electron transfer shows complicated multiphasic kinetics and strongly depends on the acidity of the solution. The strong dependence of back-electron-transfer dynamics on the ambient pH value is explained by a Nernstian-type change in the semiconductor band energy. Indeed, a variation of pH values over 7 units leads to a approximately 0.42 eV change of the conduction band edge position (i.e., the nominal free energy of the electron in the electrode). Assuming a pH-independent redox potential of the dye, this change was sufficient to push the system to a condition where direct photoinitiated electron injection to intraband gap surface states could be investigated. The existence of an electron-transfer pathway via surface trap states is supported by the similarity of the observed back-electron-transfer kinetics of alizarin/TiO2 at pH 9 and alizarin/ZrO2 reported in earlier work (J. Phys. Chem. B 2000, 104, 8995), where the conduction band edge is approximately 1 eV above the excited state of the dye. The influence of surface trap states on interfacial electron transfer has been studied, and a detailed analysis of their population, depopulation, and relaxation kinetics is performed. Therefore, alizarin adsorbed on the surface of TiO2 nanoparticles is an ideally suited system, where pH-dependent investigations allow a detailed study of the electron dynamics in trap states of TiO2 nanoparticles.  相似文献   

2.
Epitaxial ultrathin titanium dioxide films of 0.3 to approximately 7 nm thickness on a metal single crystal substrate have been investigated by high resolution vibrational and electron spectroscopies. The data complement previous morphological data provided by scanned probe microscopy and low energy electron diffraction to provide very complete characterization of this system. The thicker films display electronic structure consistent with a stoichiometric TiO(2) phase. The thinner films appear nonstoichiometric due to band bending and charge transfer from the metal substrate, while work function measurements also show a marked thickness dependence. The vibrational spectroscopy shows three clear phonon bands at 368, 438, and 829 cm(-1) (at 273 K), which confirms a rutile structure. The phonon band intensity scales linearly with film thickness and shift slightly to lower frequencies with increasing temperature, in accord with results for single crystals.  相似文献   

3.
Exciton-coupled charge-transfer (CT) dynamics in TiO(2) nanoparticles (NP) sensitized with porphyrin J-aggregates has been studied by femtosecond time-resolved transient absorption spectroscopy. J-aggregates of 5,10,15-triphenyl-20-(3,4-dihydroxyphenyl) porphyrin (TPPcat) form CT complexes on TiO(2) NP surfaces. Catechol-mediated strong CT coupling between J-aggregate and TiO(2) NP facilitates interfacial exciton dissociation for electron injection into the conduction band of the TiO(2) nanoparticle in pulse width limited time (<80 fs). Here, the electron-transfer (<80 fs) process dominates over the intrinsic exciton-relaxation process (J-aggregates: ca. 200 fs) on account of exciton-coupled CT interaction. The parent hole on J-aggregates is delocalized through J-aggregate excitonic coherence. As a result, holes immobilized on J-aggregates are spatially less accessible to electrons injected into TiO(2) , and thus the back electron transfer (BET) process is slower than that of the monomer/TiO(2) system. The J-aggregate/porphyrin system shows exciton spectral and temporal properties for better charge separation in strongly coupled composite systems.  相似文献   

4.
A series of Cr doped TiO2 films were prepared by micro arc oxidation (MAO) using an electrolyte of Na3PO4+K2Cr2O7. X-ray diffraction and scanning electron microscopy revealed that the films mainly consisted of anatase phase with a porous surface morphology. The films have an excellent photocatalytic effect for degradation of methylene blue and decomposition of water under visible light illumination. This arises from the formation of Cr3+/Cr4+ and oxygen vacancy energy levels owing to Cr doping. The former reduces the electron-hole recombination chance, while the latter generates a new gap between the conduction band (CB) and valence band (VB) of TiO2, which lowers the photo energy of the excited electron in the VB to the oxygen vacancy states. The mechanisms for film synthesis during the MAO process are also presented.  相似文献   

5.
We have synthesized a new photoactive rhenium(i)-complex having a pendant catechol functionality [Re(CO)(3)Cl(L)] (1) (L is 4-[2-(4'-methyl-2,2'-bipyridinyl-4-yl)vinyl]benzene-1,2-diol) for studying the dynamics of the interfacial electron transfer between nanoparticulate TiO(2) and the photoexcited states of this Re(i)-complex using femtosecond transient absorption spectroscopy. Our steady state absorption studies revealed that complex 1 can bind strongly to TiO(2) surfaces through the catechol functionality with the formation of a charge transfer (CT) complex, which has been confirmed by the appearance of a new red-shifted CT band. The longer wavelength absorption band for 1, bound to TiO(2) through the proposed catecholate functionality, could also be explained based on the DFT calculations. Dynamics of the interfacial electron transfer between 1 and TiO(2) nanoparticles was investigated by studying kinetics at various wavelengths in the visible and near infrared regions. Electron injection into the conduction band of the nanoparticulate TiO(2) was confirmed by detection of the conduction band electron in TiO(2) ([e(-)](TiO(2)(CB))) and the cation radical of the adsorbed dye (1˙(+)) in real time as monitored by transient absorption spectroscopy. A single exponential and pulse-width limited (<100 fs) electron injection was observed. Back electron transfer dynamics was determined by monitoring the decay kinetics of 1˙(+) and .  相似文献   

6.
Dynamics of interfacial electron transfer (ET) in the ruthenium-polypyridyl complex [{bis(2,2'-bpy)-(4-[2-(4'-methyl-2,2'-bipyridinyl-4-yl)vinyl]benzene-1,2-diol)} ruthenium(II) hexafluorophosphate] (Ru-cat)-sensitized TiO(2) nanoparticles has been investigated using femtosecond transient absorption spectroscopy detecting in the visible and near-infrared region. It has been observed that Ru-cat is coupled strongly with the TiO(2) nanoparticles through its pendant catechol moiety. Electron injection has been confirmed by direct detection of electrons in the conduction band, cation radical of the adsorbed dye, and a bleach of the dye in real time as monitored by transient absorption spectroscopy. A single-exponential and pulse width limited (<100 fs) electron injection has been observed, and the origin of it might have been from the nonthermalized excited states of the Ru-cat molecule. The result gave a strong indication that the electron injection competes with the thermalization of the photoexcited states due to large coupling elements for the forward ET reaction. Back-ET dynamics has been determined by monitoring the decay kinetics of the cation radical and injected electron and also from recovery kinetics of the bleach of the adsorbed dye. It has been fit with a multiexponential function, where approximately 30% of the injected electrons are recombined with a time constant of <2 ps, again indicating large coupling elements for the charge recombination reaction. However, our results have shown relatively long-lived charge separation in the Ru-cat/TiO(2) system as compared to other organic dye-sensitized TiO(2) nanoparticles with similar interactions.  相似文献   

7.
Structural and electronic properties of a small anatase TiO2 nanocrystal sensitized by the ruthenium dye N3 (Ru(4,4'-dicarboxy-2,2'-bipyridine)2(NCS)2) have been investigated using density functional theory (DFT) with support from Hartree-Fock (HF) and time dependent DFT (TD-DFT) calculations. Significant structural adjustments of both the dye and the nanocrystal are predicted to be induced by the strain imposed by the simultaneous formation of multiple dye-surface bonds. Electronic properties of the combined dye-nanocrystal system have also been calculated, including information about interfacial orbital mixing and the lowest excited singlet states. Ultrafast photoinduced electron transfer processes across the dye-nanoparticle interface in dye-sensitized solar cells are finally discussed in view of estimated electronic coupling strengths. The calculations predict injection times on the order of 10 fs for MLCT excitations to the ligand pi* levels that interact most strongly with the TiO2 conduction band, and an order of magnitude increase in the injection times for excitations to dye levels with poor spatial or energetic overlaps with the substrate conduction band.  相似文献   

8.
The dynamics of ultrafast electron injection from a coumarin derivative (NKX-2311), which is an efficient photosensitizer for dye-sensitized solar cells, into the conduction band of TiO(2) nanocrystalline films have been investigated by means of femtosecond transient absorption spectroscopy in a wide wavelength range from 600 nm to 10 mum. In the absence of Li(+) ions, electron injection into the TiO(2) conduction band occurred in about 300 fs. In the presence of Li(+) ions, however, electron injection occurred within approximately 100 fs, and the oxidized dye generated was found to interact with nearby Li(+) ions. Possible positions of Li(+) ion attachment to the dye molecule were examined by means of semiempirical molecular orbital calculations. The electron injection efficiency was found to increase by a factor of 1.37 in the presence of Li(+) ions. The effects of Li(+) ions on the energy of the TiO(2) conduction band and the electronic interaction between the dye molecule and Li(+) ions are discussed, and the major cause for the acceleration of electron injection was suggested to be a conduction-band shift of TiO(2).  相似文献   

9.
用光电化学方法研究了不对称菁类染料敏化TiO2纳米结构电极的光电转换过程.结果表明,该染料的电子激发态能级位置与TiO2纳米粒子导带边位置匹配较好,光激发染料后,其激发态电子可以注入到TiO2纳米多孔膜的导带,从而使TiO2纳米结构电极的吸收光谱和光电流谱红移至可见光区,其 IPCE(Incident photon-to-electron conversion efficiency)值最高可达84.3%.并进一步结合现场紫外-可见吸收光谱研究了外加电势对激发态染料往TiO2纳米多孔膜注入电子过程的影响.  相似文献   

10.
Rate constants for radiative decay, radiationless decay, and intersystem crossing are reported for a series of excited states formed by reaction of cyanoanthracene acceptors with alkylbenzenes as donors in several solvents of moderate to low polarity. The excited states have widely varying degrees of charge transfer, from essentially pure electron transfer states to pure locally excited states. The data illustrate the fundamental factors that control the contrasting relative efficiencies of radiative and radiationless processes in electron transfer compared to locally excited states. The radiationless decay rate constants can be described quantitatively as a function of the extent of charge transfer using weighted contributions from a locally excited decay mechanism and a pure electron-transfer type mechanism. The factors that control the rate constants for radiationless decay in excited states with intermediate charge-transfer character are discussed.  相似文献   

11.
We report a theoretical investigation of the adsorption of alkali metal atoms deposited on ultrathin oxide films. The properties of Li, Na, and K atoms adsorbed on SiO(2)/Mo(112) and of K on MgO / Ag(100) and TiO(2)/Pt(111) have been analyzed with particular attention to the induced changes in the work function of the system, Phi. On the nonreducible SiO(2) and MgO oxide films there is a net transfer of the outer ns electron of the alkali atom to the metal substrate conduction band; the resulting surface dipole substantially lowers Phi. The change in Phi depends (a) on the adsorption site (above the oxide film or at the interface) and (b) on the alkali metal coverage. Deposition of K on reducible TiO(2) oxide films results in adsorbed K(+) ions and in the formation of Ti(3+) ions. No charge transfer to the metal substrate is observed but also in this case the surface dipole resulting from the K-TiO(2) charge transfer has the effect to considerably reduce the work function of the system.  相似文献   

12.
A zinc phthalocyanine with tyrosine substituents (ZnPcTyr), modified for efficient far-red/near-IR performance in dye-sensitized nanostructured TiO(2) solar cells, and its reference, glycine-substituted zinc phthalocyanine (ZnPcGly), were synthesized and characterized. The compounds were studied spectroscopically, electrochemically, and photoelectrochemically. Incorporating tyrosine groups into phthalocyanine makes the dye ethanol-soluble and reduces surface aggregation as a result of steric effects. The performance of a solar cell based on ZnPcTyr is much better than that based on ZnPcGly. Addition of 3alpha,7alpha-dihydroxy-5beta-cholic acid (cheno) and 4-tert-butylpyridine (TBP) to the dye solution when preparing a dye-sensitized TiO(2) electrode diminishes significantly the surface aggregation and, therefore, improves the performance of solar cells based on these phthalocyanines. The highest monochromatic incident photo-to-current conversion efficiency (IPCE) of approximately 24% at 690 nm and an overall conversion efficiency (eta) of 0.54% were achieved for a cell based on a ZnPcTyr-sensitized TiO(2) electrode. Addition of TBP in the electrolyte decreases the IPCE and eta considerably, although it increases the open-circuit photovoltage. Time-resolved transient absorption measurements of interfacial electron-transfer kinetics in a ZnPcTyr-sensitized nanostructured TiO(2) thin film show that electron injection from the excited state of the dye into the conduction band of TiO(2) is completed in approximately 500 fs and that more than half of the injected electrons recombines with the oxidized dye molecules in approximately 300 ps. In addition to surface aggregation, the very fast electron recombination is most likely responsible for the low performance of the solar cell based on ZnPcTyr.  相似文献   

13.
Time-resolved emission and absorption spectroscopy are used to study the photoinduced dynamics of forward and back electron transfer processes taking place between a recently synthesized series of donor-(π-spacer)-acceptor organic dyes and semiconductor films. Results are obtained for vertically oriented titania nanotube arrays (inner diameters 36 nm and 70 nm), standard titania nanoparticles (25 nm diameter) and, as a reference, alumina nanoparticle (13 nm diameter) films. The studied dyes contain a triphenylamine group as an electron donor, cyanoacrylic acid part as an electron acceptor, and differ by the substituents in a spacer group that causes a shift of its absorption spectra. Despite a red-shift of the dye absorption band resulting in an improved response to the solar spectrum, smaller electron injection rates and smaller extinction coefficients result in reduced dye sensitized solar cell (DSSC) conversion efficiencies. For the most efficient dye, TPC1, electron injection from the hot locally excited state to titania on a time scale of about 100 fs is suggested, while from the relaxed charge transfer state it proceeds in a non-exponential way with time constants from 1 ps to 50 ps. Our results imply that the latter process involves the trap states below the conduction band edge (or the sub-bandgap tail of the acceptor states), localized close to the dye radical cation, and is accompanied by fast electron recombination to the parent dye's ground state. This process should limit the efficiency of DSSCs made using these types of organic dyes. The residual, slower recombination can be described by a stretched exponential decay with a characteristic time of 0.5 μs and a dispersion parameter of 0.33. Both the electron injection and back electron transfer dynamics are similar in titania nanoparticles and nanotubes. Variations between the two film types are only found in the time resolved emission transients, which are explained in terms of the difference in local electric fields affecting the position of the emission bands.  相似文献   

14.
A surface femtosecond two-photon photoemission (2PPE) spectrometer devoted to the study of ultrafast excited electron dynamics and photochemical kinetics on metal and metal oxide surfaces has been constructed. Low energy photoelectrons are measured using a hemispheri-cal electron energy analyzer with an imaging detector that allows us to detect the energy and the angular distributions of the photoelectrons simultaneously. A Mach-Zehnder interferom-eter was built for the time-resolved 2PPE (TR-2PPE) measurement to study ultrafast surface excited electron dynamics, which was demonstrated on the Cu(111) surface. A scheme for measuring time-dependent 2PPE (TD-2PPE) spectra has also been developed for studies of surface photochemistry. This technique has been applied to a preliminary study on the photochemical kinetics on ethanol/TiO2(110). We have also shown that the ultrafast dy-namics of photoinduced surface excited resonances can be investigated in a reliable way by combining the TR-2PPE and TD-2PPE techniques.  相似文献   

15.
The adsorption of riboflavin on the surface of TiO(2) colloidal particles and the electron transfer process from its singlet excited state to the conduction band of TiO(2) were examined by absorption and fluorescence quenching measurements. The apparent association constants (K(app)) were determined. The quenching mechanism is discussed involving electron transfer from riboflavin to TiO(2).  相似文献   

16.
A systematic study of the ultrafast decay of metalloporphyrins containing various transition metals with partially filled 3d shells and zinc (3d filled) is reported here after excitation in the second excited state of the system (Soret band). Both time-of-flight mass spectrometry and velocity map imaging have been used for detection. A general biexponential decay with a short time constant tau1 approximately 100 fs is observed for the transition metal porphyrins, followed by a tau2 approximately 1 ps time decay. This evolution is interpreted as a porphyrin-to-metal charge transfer, tau1, followed by a back transfer, tau2, which leads to an excited state (d,d*) localized on the metal. These conclusions stem from the different behaviors of zinc and the transition metal porphyrins. A porphyrin-to-metal charge transfer model is chosen to describe the relaxation mechanism, based upon the fact that transition metalloporphyrins can accept electrons on the metal site, in contrast to zinc porphyrins.  相似文献   

17.
Extended rigid tripodal sensitizers were used to investigate the rate of long-distance photoinduced charge transfer from the MLCT excited states of RuII-based chromophores into mesoporous TiO2 films. The distance between the RuII center and the surface of the semiconductor was 24 A. Rapid biexponential charge injection with a major subpicosecond component as fast as 240 fs was observed upon femtosecond laser excitation of the tripods bound to the TiO2 surface. This rate exceeds the typical rates of vibrational cooling and thus strongly supports the possibility of "hot electron injection" occurring at very large donor-to-semiconductor distances.  相似文献   

18.
The binding energies and lifetimes of the n=1 image resonance on Au(111) are measured as a function of n-heptane layer thickness by femtosecond time-resolved two-photon photoemission (TR-2PPE) spectroscopy. The lifetime of the image resonance dramatically increases from approximately 4 fs on clean Au(111) to 1.6 ps with three layers of n-heptane. Because the image resonance is above the L1 band edge of Au, this increase in lifetime is attributed to the tunneling barrier presented by the sigma-sigma* band gap of the n-heptane film. We use the one-dimensional dielectric continuum model (DCM) to approximate the surface potential and to determine the binding energies and the lifetimes of the image resonances. The exact solution of the DCM potential is determined in two ways: the first by wave-packet propagation and the second by using a tight-binding Green's function approach. The first approach allows band-edge effects to be treated. The latter approach is particularly useful in illustrating the similarity between TR-2PPE and conductance measurements.  相似文献   

19.
The yields and dynamics for energy transfer from the metal-to-ligand charge-transfer excited states of Ru(deeb)(bpy)(2)(PF(6))(2), Ru(2+), and Os(deeb)(bpy)(2)(PF(6))(2), Os(2+), where deeb is 4,4'-(CH(3)CH(2)CO(2))(2)-2,2'-bipyridine, anchored to mesoporous nanocrystalline (anatase) TiO(2) thin films were quantified. Lateral energy transfer from Ru(2+)* to Os(2+) was observed, and the yields were measured as a function of the relative surface coverage and the external solvent environment (CH(3)CN, THF, CCl(4), and hexanes). Excited-state decay of Ru(2+)*/TiO(2) was well described by a parallel first- and second-order kinetic model, whereas Os(2+)*/TiO(2) decayed with first-order kinetics within experimental error. The first-order component was assigned to the radiative and nonradiative decay pathways (tau = 1 micros for Ru(2+)*/TiO(2) and tau = 50 ns for Os(2+)*/TiO(2)). The second-order component was attributed to intermolecular energy transfer followed by triplet-triplet annihilation. An analytical model was derived that allowed determination of the fraction of excited-states that follow the two pathways. The fraction of Ru(2+)*/TiO(2) that decayed through the second-order pathway increased with surface coverage and excitation intensity. Monte Carlo simulations were performed to estimate the Ru(2+)* --> Ru(2+) intermolecular energy transfer rate constant of (30 ns)(-1).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号