首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
These experiments examined how high presentation levels influence speech recognition for high- and low-frequency stimuli in noise. Normally hearing (NH) and hearing-impaired (HI) listeners were tested. In Experiment 1, high- and low-frequency bandwidths yielding 70%-correct word recognition in quiet were determined at levels associated with broadband speech at 75 dB SPL. In Experiment 2, broadband and band-limited sentences (based on passbands measured in Experiment 1) were presented at this level in speech-shaped noise filtered to the same frequency bandwidths as targets. Noise levels were adjusted to produce approximately 30%-correct word recognition. Frequency bandwidths and signal-to-noise ratios supporting criterion performance in Experiment 2 were tested at 75, 87.5, and 100 dB SPL in Experiment 3. Performance tended to decrease as levels increased. For NH listeners, this "rollover" effect was greater for high-frequency and broadband materials than for low-frequency stimuli. For HI listeners, the 75- to 87.5-dB increase improved signal audibility for high-frequency stimuli and rollover was not observed. However, the 87.5- to 100-dB increase produced qualitatively similar results for both groups: scores decreased most for high-frequency stimuli and least for low-frequency materials. Predictions of speech intelligibility by quantitative methods such as the Speech Intelligibility Index may be improved if rollover effects are modeled as frequency dependent.  相似文献   

2.
Previous research has demonstrated reduced speech recognition when speech is presented at higher-than-normal levels (e.g., above conversational speech levels), particularly in the presence of speech-shaped background noise. Persons with hearing loss frequently listen to speech-in-noise at these levels through hearing aids, which incorporate multiple-channel, wide dynamic range compression. This study examined the interactive effects of signal-to-noise ratio (SNR), speech presentation level, and compression ratio on consonant recognition in noise. Nine subjects with normal hearing identified CV and VC nonsense syllables in a speech-shaped noise at two SNRs (0 and +6 dB), three presentation levels (65, 80, and 95 dB SPL) and four compression ratios (1:1, 2:1, 4:1, and 6:1). Stimuli were processed through a simulated three-channel, fast-acting, wide dynamic range compression hearing aid. Consonant recognition performance decreased as compression ratio increased and presentation level increased. Interaction effects were noted between SNR and compression ratio, as well as between presentation level and compression ratio. Performance decrements due to increases in compression ratio were larger at the better (+6 dB) SNR and at the lowest (65 dB SPL) presentation level. At higher levels (95 dB SPL), such as those experienced by persons with hearing loss, increasing compression ratio did not significantly affect speech intelligibility.  相似文献   

3.
The speech understanding of persons with "flat" hearing loss (HI) was compared to a normal-hearing (NH) control group to examine how hearing loss affects the contribution of speech information in various frequency regions. Speech understanding in noise was assessed at multiple low- and high-pass filter cutoff frequencies. Noise levels were chosen to ensure that the noise, rather than quiet thresholds, determined audibility. The performance of HI subjects was compared to a NH group listening at the same signal-to-noise ratio and a comparable presentation level. Although absolute speech scores for the HI group were reduced, performance improvements as the speech and noise bandwidth increased were comparable between groups. These data suggest that the presence of hearing loss results in a uniform, rather than frequency-specific, deficit in the contribution of speech information. Measures of auditory thresholds in noise and speech intelligibility index (SII) calculations were also performed. These data suggest that differences in performance between the HI and NH groups are due primarily to audibility differences between groups. Measures of auditory thresholds in noise showed the "effective masking spectrum" of the noise was greater for the HI than the NH subjects.  相似文献   

4.
To examine spectral effects on declines in speech recognition in noise at high levels, word recognition for 18 young adults with normal hearing was assessed for low-pass-filtered speech and speech-shaped maskers or high-pass-filtered speech and speech-shaped maskers at three speech levels (70, 77, and 84 dB SPL) for each of three signal-to-noise ratios (+8, +3, and -2 dB). An additional low-level noise produced equivalent masked thresholds for all subjects. Pure-tone thresholds were measured in quiet and in all maskers. If word recognition was determined entirely by signal-to-noise ratio, and was independent of signal levels and the spectral content of speech and maskers, scores should remain constant with increasing level for both low- and high-frequency speech and maskers. Recognition of low-frequency speech in low-frequency maskers and high-frequency speech in high-frequency maskers decreased significantly with increasing speech level when signal-to-noise ratio was held constant. For low-frequency speech and speech-shaped maskers, the decline was attributed to nonlinear growth of masking which reduced the "effective" signal-to-noise ratio at high levels, similar to previous results for broadband speech and speech-shaped maskers. Masking growth and reduced "effective" signal-to-noise ratio accounted for some but not all the decline in recognition of high-frequency speech in high-frequency maskers.  相似文献   

5.
Internal noise generated by hearing-aid circuits can be audible and objectionable to aid users, and may lead to the rejection of hearing aids. Two expansion algorithms were developed to suppress internal noise below a threshold level. The multiple-channel algorithm's expansion thresholds followed the 55-dB SPL long-term average speech spectrum, while the single-channel algorithm suppressed sounds below 45 dBA. With the recommended settings in static conditions, the single-channel algorithm provided lower noise levels, which were perceived as quieter by most normal-hearing participants. However, in dynamic conditions "pumping" noises were more noticeable with the single-channel algorithm. For impaired-hearing listeners fitted with the ADRO amplification strategy, both algorithms maintained speech understanding for words in sentences presented at 55 dB SPL in quiet (99.3% correct). Mean sentence reception thresholds in quiet were 39.4, 40.7, and 41.8 dB SPL without noise suppression, and with the single- and multiple-channel algorithms, respectively. The increase in the sentence reception threshold was statistically significant for the multiple-channel algorithm, but not the single-channel algorithm. Thus, both algorithms suppressed noise without affecting the intelligibility of speech presented at 55 dB SPL, with the single-channel algorithm providing marginally greater noise suppression in static conditions, and the multiple-channel algorithm avoiding pumping noises.  相似文献   

6.
Four different compression algorithms were implemented in wearable digital hearing aids: (1) The slow-acting dual-front-end automatic gain control (AGC) system [B. C. J. Moore, B. R. Glasberg, and M. A. Stone, Br. J. Audiol. 25, 171-182 (1991)], combined with appropriate frequency response equalization, with a compression threshold of 63 dB sound pressure level (SPL) and with a compression ratio of 30 (DUAL-HI); (2) The dual-front-end AGC system combined with appropriate frequency response equalization, with a compression threshold of 55 dB SPL and with a compression ratio of 3 (DUAL-LO). This was intended to give some impression of the levels of sounds in the environment; (3) Fast-acting full dynamic range compression in four channels (FULL-4). The compression was designed to minimize envelope distortion due to overshoots and undershoots; (4) A combination of (2) and (3) above, where each applied less compression than when used alone (DUAL-4). Initial fitting was partly based on the concept of giving a flat specific-loudness pattern for a 65-dB SPL speech-shaped noise input, and this was followed by fine tuning using an adaptive procedure with speech stimuli. Eight subjects with moderate to severe cochlear hearing loss were tested in a counter-balanced design. Subjects had at least 2 weeks experience with each system in everyday life before evaluation using the Abbreviated Profile of Hearing Aid Benefit (APHAB) test and measures of speech intelligibility in quiet (AB word lists at 50 and 80 dB SPL) and noise (adoptive sentence lists in speech-shaped noise, or that same noise amplitude modulated with the envelope of speech from a single talker). The APHAB scores did not indicate clear differences between the four systems. Scores for the AB words in quiet were high for all four systems at both 50 and 80 dB SPL. The speech-to-noise ratios required for 50% intelligibility were low (indicating good performance) and similar for all the systems, but there was a slight trend for better performance in modulated noise with the DUAL-4 system than with the other systems. A subsequent trial where three subjects directly compared each of the four systems in their everyday lives indicated a slight preference for the DUAL-LO system. Overall, the results suggest that it is not necessary to compress fast modulations of the input signal.  相似文献   

7.
Effects of noise on speech production: acoustic and perceptual analyses   总被引:4,自引:0,他引:4  
Acoustical analyses were carried out on a set of utterances produced by two male speakers talking in quiet and in 80, 90, and 100 dB SPL of masking noise. In addition to replicating previous studies demonstrating increases in amplitude, duration, and vocal pitch while talking in noise, these analyses also found reliable differences in the formant frequencies and short-term spectra of vowels. Perceptual experiments were also conducted to assess the intelligibility of utterances produced in quiet and in noise when they were presented at equal S/N ratios for identification. In each experiment, utterances originally produced in noise were found to be more intelligible than utterances produced in the quiet. The results of the acoustic analyses showed clear and consistent differences in the acoustic-phonetic characteristics of speech produced in quiet versus noisy environments. Moreover, these accounts differences produced reliable effects on intelligibility. The findings are discussed in terms of: (1) the nature of the acoustic changes that taken place when speakers produce speech under adverse conditions such as noise, psychological stress, or high cognitive load: (2) the role of training and feedback in controlling and modifying a talker's speech to improve performance of current speech recognizers; and (3) the development of robust algorithms for recognition of speech in noise.  相似文献   

8.
To examine spectral and threshold effects for speech and noise at high levels, recognition of nonsense syllables was assessed for low-pass-filtered speech and speech-shaped maskers and high-pass-filtered speech and speech-shaped maskers at three speech levels, with signal-to-noise ratio held constant. Subjects were younger adults with normal hearing and older adults with normal hearing but significantly higher average quiet thresholds. A broadband masker was always present to minimize audibility differences between subject groups and across presentation levels. For subjects with lower thresholds, the declines in recognition of low-frequency syllables in low-frequency maskers were attributed to nonlinear growth of masking which reduced "effective" signal-to-noise ratio at high levels, whereas the decline for subjects with higher thresholds was not fully explained by nonlinear masking growth. For all subjects, masking growth did not entirely account for declines in recognition of high-frequency syllables in high-frequency maskers at high levels. Relative to younger subjects with normal hearing and lower quiet thresholds, older subjects with normal hearing and higher quiet thresholds had poorer consonant recognition in noise, especially for high-frequency speech in high-frequency maskers. Age-related effects on thresholds and task proficiency may be determining factors in the recognition of speech in noise at high levels.  相似文献   

9.
Effects of age and mild hearing loss on speech recognition in noise   总被引:5,自引:0,他引:5  
Using an adaptive strategy, the effects of mild sensorineural hearing loss and adult listeners' chronological age on speech recognition in babble were evaluated. The signal-to-babble ratio required to achieve 50% recognition was measured for three speech materials presented at soft to loud conversational speech levels. Four groups of subjects were tested: (1) normal-hearing listeners less than 44 years of age, (2) subjects less than 44 years old with mild sensorineural hearing loss and excellent speech recognition in quiet, (3) normal-hearing listeners greater than 65 with normal hearing, and (4) subjects greater than 65 years old with mild hearing loss and excellent performance in quiet. Groups 1 and 3, and groups 2 and 4 were matched on the basis of pure-tone thresholds, and thresholds for each of the three speech materials presented in quiet. In addition, groups 1 and 2 were similar in terms of mean age and age range, as were groups 3 and 4. Differences in performance in noise as a function of age were observed for both normal-hearing and hearing-impaired listeners despite equivalent performance in quiet. Subjects with mild hearing loss performed significantly worse than their normal-hearing counterparts. These results and their implications are discussed.  相似文献   

10.
Consonant recognition in quiet and in noise was investigated as a function of age for essentially normal hearing listeners 21-68 years old, using the nonsense syllable test (NST) [Resnick et al., J. Acoust. Soc. Am. Suppl. 1 58, S114 (1975)]. The subjects audited the materials in quiet and at S/N ratios of +10 and +5 dB at their most comfortable listening levels (MCLs). The MCLs approximated conversational speech levels and were not significantly different between the age groups. The effects of age group, S/N condition (quiet, S/N +10, S/N +5) and NST subsets, and the S/N condition X subset interaction were all significant. Interactions involving the age factor were nonsignificant. Confusion matrices were similar across age groups, including the directions of errors between the most frequently confused phonemes. Also, the older subjects experienced performance decrements on the same features that were least accurately recognized by the younger subjects. The findings suggest that essentially normal older persons listening in quiet and in noise experience decreased consonant recognition ability, but that the nature of their phoneme confusions is similar to that of younger individuals. Even though the older subjects met the same selection criteria as did younger ones, there was an expected shift upward in auditory thresholds with age within these limits. Sensitivity at 8000 Hz was correlated with NST scores in noise when controlling for age, but the correlation between performance in noise and age was nonsignificant when controlling for the 8000-Hz threshold. These associations seem to implicate the phenomena underlying the increased 8000-Hz thresholds in the speech recognition problems of the elderly, and appear to support the concept of peripheral auditory deterioration with aging even among those with essentially normal hearing.  相似文献   

11.
The study was designed to test the validity of the American Academy of Ophthalmology and Otolaryngology's (AAOO) 26-dB average hearing threshold level at 500, 1000, and 2000 Hz as a predictor of hearing handicap. To investigate this criterion the performance of a normal-hearing group was compared with that of two groups, categorized according to the AAOO [Trans. Am. Acad. Ophthal. Otolaryng. 63, 236-238 (1959)] guidelines as having no handicap. The latter groups, however, had significant hearing losses in the frequencies above 2000 Hz. Mean hearing threshold levels for 3000, 4000, and 6000 Hz were 54 dB for group II and 63 dB for group III. Two kinds of speech stimuli were presented at an A-weighted sound level of 60 dB in quiet and in three different levels of noise. The resulting speech recognition scores were significantly lower for the hearing-impaired groups than for the normal-hearing group on both kinds of speech materials and in all three noise conditions. Mean scores for group III were significantly lower than those of the normal-hearing group, even in the quiet condition. Speech recognition scores showed significantly better correlation with hearing levels for frequency combinations including frequencies above 2000 Hz than for the 500-, 1000-, and 2000-Hz combination. On the basis of these results the author recommends that the 26-dB fence should be somewhat lower, and that frequencies above 2000 Hz should be included in any scheme for evaluating hearing handicap.  相似文献   

12.
Binaural speech intelligibility in noise for hearing-impaired listeners   总被引:2,自引:0,他引:2  
The effect of head-induced interaural time delay (ITD) and interaural level differences (ILD) on binaural speech intelligibility in noise was studied for listeners with symmetrical and asymmetrical sensorineural hearing losses. The material, recorded with a KEMAR manikin in an anechoic room, consisted of speech, presented from the front (0 degree), and noise, presented at azimuths of 0 degree, 30 degrees, and 90 degrees. Derived noise signals, containing either only ITD or only ILD, were generated using a computer. For both groups of subjects, speech-reception thresholds (SRT) for sentences in noise were determined as a function of: (1) noise azimuth, (2) binaural cue, and (3) an interaural difference in overall presentation level, simulating the effect of a monaural hearing acid. Comparison of the mean results with corresponding data obtained previously from normal-hearing listeners shows that the hearing impaired have a 2.5 dB higher SRT in noise when both speech and noise are presented from the front, and 2.6-5.1 dB less binaural gain when the noise azimuth is changed from 0 degree to 90 degrees. The gain due to ILD varies among the hearing-impaired listeners between 0 dB and normal values of 7 dB or more. It depends on the high-frequency hearing loss at the side presented with the most favorable signal-to-noise (S/N) ratio. The gain due to ITD is nearly normal for the symmetrically impaired (4.2 dB, compared with 4.7 dB for the normal hearing), but only 2.5 dB in the case of asymmetrical impairment. When ITD is introduced in noise already containing ILD, the resulting gain is 2-2.5 dB for all groups. The only marked effect of the interaural difference in overall presentation level is a reduction of the gain due to ILD when the level at the ear with the better S/N ratio is decreased. This implies that an optimal monaural hearing aid (with a moderate gain) will hardly interfere with unmasking through ITD, while it may increase the gain due to ILD by preventing or diminishing threshold effects.  相似文献   

13.
Word recognition in sentences with and without context was measured in young and aged subjects with normal but not identical audiograms. Benefit derived from context by older adults has been obscured, in part, by the confounding effect of even mildly elevated thresholds, especially as listening conditions vary in difficulty. This problem was addressed here by precisely controlling signal-to-noise ratio across conditions and by accounting for individual differences in signal-to-noise ratio. Pure-tone thresholds and word recognition were measured in quiet and threshold-shaped maskers that shifted quiet thresholds by 20 and 40 dB. Word recognition was measured at several speech levels in each condition. Threshold was defined as the speech level (or signal-to-noise ratio) corresponding to the 50 rau point on the psychometric function. As expected, thresholds and slopes of psychometric functions were different for sentences with context compared to those for sentences without context. These differences were equivalent for young and aged subjects. Individual differences in word recognition among all subjects, young and aged, were accounted for by individual differences in signal-to-noise ratio. With signal-to-noise ratio held constant, word recognition for all subjects remained constant or decreased only slightly as speech and noise levels increased. These results suggest that, given equivalent speech audibility, older and younger listeners derive equivalent benefit from context.  相似文献   

14.
Recognition of isolated monosyllabic words in quiet and recognition of key words in low- and high-context sentences in babble were measured in a large sample of older persons enrolled in a longitudinal study of age-related hearing loss. Repeated measures were obtained yearly or every 2 to 3 years. To control for concurrent changes in pure-tone thresholds and speech levels, speech-recognition scores were adjusted using an importance-weighted speech-audibility metric (AI). Linear-regression slope estimated the rate of change in adjusted speech-recognition scores. Recognition of words in quiet declined significantly faster with age than predicted by declines in speech audibility. As subjects aged, observed scores deviated increasingly from AI-predicted scores, but this effect did not accelerate with age. Rate of decline in word recognition was significantly faster for females than males and for females with high serum progesterone levels, whereas noise history had no effect. Rate of decline did not accelerate with age but increased with degree of hearing loss, suggesting that with more severe injury to the auditory system, impairments to auditory function other than reduced audibility resulted in faster declines in word recognition as subjects aged. Recognition of key words in low- and high-context sentences in babble did not decline significantly with age.  相似文献   

15.
Annoyance ratings in speech intelligibility tests at 45 dB(A) and 55 dB(A) traffic noise were investigated in a laboratory study. Subjects were chosen according to their hearing acuity to be representative of 70-year-old men and women, and of noise-induced hearing losses typical for a great number of industrial workers. These groups were compared with normal hearing subjects of the same sex and, when possible, the same age. The subjects rated their annoyance on an open 100 mm scale. Significant correlations were found between annoyance expressed in millimetres and speech intelligibility in percent when all subjects were taken as one sample. Speech intelligibility was also calculated from physical measurements of speech and noise by using the articulation index method. Observed and calculated speech intelligibility scores are compared and discussed. Also treated is the estimation of annoyance by traffic noise at moderate noise levels via speech intelligibility scores.  相似文献   

16.
For 140 male subjects (20 per decade between the ages 20 and 89) and 72 female subjects (20 per decade between 60 and 89, and 12 for the age interval 90-96), the monaural speech-reception threshold (SRT) for sentences was investigated in quiet and at four noise levels (22.2, 37.5, 52.5, and 67.5 dBA noise with long-term average speech spectra). The median SRT as well as the quartiles are given as a function of age. The data are described in terms of a model published earlier [J. Acoust. Soc. Am. 63, 533-549 (1978)]. According to this model every hearing loss for speech (SHL) is interpreted as the sum of a loss class A (attenuation), characterized by a reduction of the levels of both speech signal and noise, and a loss class D (distortion), comparable with a decrease in signal-to-noise ratio. Both SHLA+D (hearing loss in quiet) and SHLD (hearing loss at high noise levels) increase progressively above the age of 50 (reaching typical values of 30 and 6 dB, respectively, at age 85). The spread of SHLD as a function of SHLA+D for the individual ears is so large (sigma = 2.7 dB) that subjects with the same hearing loss for speech in quiet may differ considerably in their ability to understand speech in noise. The data confirm that the hearing handicap of many elderly subjects manifests itself primarily in a noisy environment. Acceptable noise levels in rooms used by the aged must be 5 to 10 dB lower than those for normal-hearing subjects.  相似文献   

17.
The goal of this study was to determine the extent to which the difficulty experienced by impaired listeners in understanding noisy speech can be explained on the basis of elevated tone-detection thresholds. Twenty-one impaired ears of 15 subjects, spanning a variety of audiometric configurations with average hearing losses to 75 dB, were tested for reception of consonants in a speech-spectrum noise. Speech level, noise level, and frequency-gain characteristic were varied to generate a range of listening conditions. Results for impaired listeners were compared to those of normal-hearing listeners tested under the same conditions with extra noise added to approximate the impaired listeners' detection thresholds. Results for impaired and normal listeners were also compared on the basis of articulation indices. Consonant recognition by this sample of impaired listeners was generally comparable to that of normal-hearing listeners with similar threshold shifts listening under the same conditions. When listening conditions were equated for articulation index, there was no clear dependence of consonant recognition on average hearing loss. Assuming that the primary consequence of the threshold simulation in normals is loss of audibility (as opposed to suprathreshold discrimination or resolution deficits), it is concluded that the primary source of difficulty in listening in noise for listeners with moderate or milder hearing impairments, aside from the noise itself, is the loss of audibility.  相似文献   

18.
Relations between perception of suprathreshold speech and auditory functions were examined in 24 hearing-impaired listeners and 12 normal-hearing listeners. The speech intelligibility index (SII) was used to account for audibility. The auditory functions included detection efficiency, temporal and spectral resolution, temporal and spectral integration, and discrimination of intensity, frequency, rhythm, and spectro-temporal shape. All auditory functions were measured at 1 kHz. Speech intelligibility was assessed with the speech-reception threshold (SRT) in quiet and in noise, and with the speech-reception bandwidth threshold (SRBT), previously developed for investigating speech perception in a limited frequency region around 1 kHz. The results showed that the elevated SRT in quiet could be explained on the basis of audibility. Audibility could only partly account for the elevated SRT values in noise and the deviant SRBT values, suggesting that suprathreshold deficits affected intelligibility in these conditions. SII predictions for the SRBT improved significantly by including the individually measured upward spread of masking in the SII model. Reduced spectral resolution, reduced temporal resolution, and reduced frequency discrimination appeared to be related to speech perception deficits. Loss of peripheral compression appeared to have the smallest effect on the intelligibility of suprathreshold speech.  相似文献   

19.
Speech recognition was measured as a function of spectral resolution (number of spectral channels) and speech-to-noise ratio in normal-hearing (NH) and cochlear-implant (CI) listeners. Vowel, consonant, word, and sentence recognition were measured in five normal-hearing listeners, ten listeners with the Nucleus-22 cochlear implant, and nine listeners with the Advanced Bionics Clarion cochlear implant. Recognition was measured as a function of the number of spectral channels (noise bands or electrodes) at signal-to-noise ratios of + 15, + 10, +5, 0 dB, and in quiet. Performance with three different speech processing strategies (SPEAK, CIS, and SAS) was similar across all conditions, and improved as the number of electrodes increased (up to seven or eight) for all conditions. For all noise levels, vowel and consonant recognition with the SPEAK speech processor did not improve with more than seven electrodes, while for normal-hearing listeners, performance continued to increase up to at least 20 channels. Speech recognition on more difficult speech materials (word and sentence recognition) showed a marginally significant increase in Nucleus-22 listeners from seven to ten electrodes. The average implant score on all processing strategies was poorer than scores of NH listeners with similar processing. However, the best CI scores were similar to the normal-hearing scores for that condition (up to seven channels). CI listeners with the highest performance level increased in performance as the number of electrodes increased up to seven, while CI listeners with low levels of speech recognition did not increase in performance as the number of electrodes was increased beyond four. These results quantify the effect of number of spectral channels on speech recognition in noise and demonstrate that most CI subjects are not able to fully utilize the spectral information provided by the number of electrodes used in their implant.  相似文献   

20.
The word recognition ability of 4 normal-hearing and 13 cochlearly hearing-impaired listeners was evaluated. Filtered and unfiltered speech in quiet and in noise were presented monaurally through headphones. The noise varied over listening situations with regard to spectrum, level, and temporal envelope. Articulation index theory was applied to predict the results. Two calculation methods were used, both based on the ANSI S3.5-1969 20-band method [S3.5-1969 (American National Standards Institute, New York)]. Method I was almost identical to the ANSI method. Method II included a level- and hearing-loss-dependent calculation of masking of stationary and on-off gated noise signals and of self-masking of speech. Method II provided the best prediction capability, and it is concluded that speech intelligibility of cochlearly hearing-impaired listeners may also, to a first approximation, be predicted from articulation index theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号