首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We numerically and theoretically demonstrate that a metal–insulator–metal (MIM) waveguide with multiple-teeth-shaped graded depths can strongly slow light as the propagation velocities of surface plasmon polaritons (SPPs) are reduced over a large frequency bandwidth at visible wavelengths domain. Since the wavelength of the trough of transmission is dependent on the depth of the tooth-shaped dielectric in the MIM waveguide, the guided SPPs at different frequencies can be localized at different spatial positions of the multiple-teeth-shaped graded depths MIM waveguide, which can be proved by the scattering matrix method. The separation between trapped waves can be tuned by changing the grade of the tooth-shaped depths and the lifetime of SPPs in the waveguide may be long enough for some meaningful nano-photonic applications.  相似文献   

2.
Yan Y  Zhangand L  Willner A 《Optics letters》2011,36(20):4113-4115
We propose nondegenerate four-wave mixing mirrorless oscillation in a multimode silicon nonlinear waveguide. Thanks to the large modal dispersion between two spatial modes caused by the high-index-contrast waveguide structure, two counterpropagating pumps of one spatial mode can generate two new optical waves of the other spatial mode at different frequencies. The phase-matching condition can be satisfied with the higher-order modes involved; therefore, frequencies of the newly generated light can be tuned by simply changing the pump frequency. The threshold power and conversion efficiency of the proposed mirrorless oscillation are investigated under different waveguide parameters.  相似文献   

3.
Employing the surface plasmon polaritons (SPPs), a kind of coupled metallic squareness ring waveguide structure is presented. Its properties has been analyzed with the finite different time domain method and the coupling length has been derived from the coupled mode theory. It is demonstrated that the SPPs excited by the light with different wavelength will come out from different output port due to different coupling length. By appropriately designing the structure, it can be utilized to realize some optics devices such as multiple-wavelength sorter and beam splitter. This will break through the diffraction limit of traditional optical devices.  相似文献   

4.
张永元  罗李娜  张中月 《物理学报》2015,64(9):97303-097303
金属纳米线波导可以将光局域在亚波长尺度内传播, 在纳米光子集成回路方面有着重要的作用. 本文应用有限元方法, 研究了十字结构银纳米线的表面等离极化激元分束特性. 结果表明, 不同模式的表面等离极化激元在十字结构三个分支的输出依赖于端面的几何结构参数. 此外, 研究还发现由于不同模式表面等离极化激元叠加, 在十字结构的分支上出现了周期性电场分布.  相似文献   

5.
Starting conditions for generation and features of oscillation establishment in a relativistic diffraction generator for different beam current values are numerically studied using the matrix multimode method. The efficiency boost and generation frequency stabilization are found to arise at overlap of two electron mechanisms—excitation of the fundamental oscillation of the system in the region of the 2π-type frequencies with a resonance near the cutoff frequency of the bulk mode nearest to the 2π type in a smooth waveguide.  相似文献   

6.
A study is made of the resonant oscillation modes in a three-dimensional channel filled by a heavy incompressible liquid, with a free surface at the top and an elastic membrane on the bottom. It is shown that for definite relations between the parameters of the channel and the inclusion there is a discrete spectrum, which extends only up to the waveguide cutoff frequency, in addition to the continuous spectrum of oscillation frequencies. The oscillation modes of the liquid have a localized character in the region of the inclusion. Zh. Tekh. Fiz. 69, 37–42 (August 1999)  相似文献   

7.
The study of wave propagation in periodic systems is at the frontiers of physics, from fluids to condensed matter physics, and from photonic crystals to Bose-Einstein condensates. In optics, a typical example of periodic system is a closely-spaced waveguide array, in which collective behavior of wave propagation exhibits many intriguing phenomena that have no counterpart in homogeneous media. Even in a linear waveguide array, the diffraction property of a light beam changes due to evanescent coupling between nearby waveguide sites, leading to normal and anomalous discrete diffraction. In a nonlinear waveguide array, a balance between diffraction and self-action gives rise to novel localized states such as spatial “discrete solitons” in the semi-infinite (or total-internal-reflection) gap or spatial “gap solitons” in the Bragg reflection gaps. Recently, in a series of experiments, we have “fabricated” closely-spaced waveguide arrays (photonic lattices) by optical induction. Such photonic structures have attracted great interest due to their novel physics, link to photonic crystals, as well as potential applications in optical switching and navigation. In this review article, we present a brief overview on our experimental demonstrations of a number of novel spatial soliton phenomena in light-induced photonic bandgap structures, including self-trapping of fundamental discrete solitons and more sophisticated lattice gap solitons. Much of our work has direct impact on the study of similar discrete phenomena in systems beyond optics, including sound waves, water waves, and matter waves (Bose-Einstein condensates) propagating in periodic potentials.  相似文献   

8.
The study of wave propagation in periodic systems is at the frontiers of physics, from fluids to condensed matter physics, and from photonic crystals to Bose-Einstein condensates. In optics, a typical example of periodic system is a closely-spaced waveguide array, in which collective behavior of wave propagation exhibits many intriguing phenomena that have no counterpart in homogeneous media. Even in a linear waveguide array, the diffraction property of a light beam changes due to evanescent coupling between nearby waveguide sites, leading to normal and anomalous discrete diffraction. In a nonlinear waveguide array, a balance between diffraction and self-action gives rise to novel localized states such as spatial “discrete solitons” in the semi-infinite (or total-internal-reflection) gap or spatial “gap solitons” in the Bragg reflection gaps. Recently, in a series of experiments, we have “fabricated” closely-spaced waveguide arrays (photonic lattices) by optical induction. Such photonic structures have attracted great interest due to their novel physics, link to photonic crystals, as well as potential applications in optical switching and navigation. In this review article, we present a brief overview on our experimental demonstrations of a number of novel spatial soliton phenomena in light-induced photonic bandgap structures, including self-trapping of fundamental discrete solitons and more sophisticated lattice gap solitons. Much of our work has direct impact on the study of similar discrete phenomena in systems beyond optics, including sound waves, water waves, and matter waves (Bose-Einstein condensates) propagating in periodic potentials.   相似文献   

9.
We present a comprehensive experimental study of terahertz (THz) wave propagation utilizing surface plasmon polaritons (SPPs) on the interfaces of a thin dielectric core layer sandwiched between two corrugated metallic claddings. THz wave impinges on the structured surfaces at normal incidence. Long-lasting oscillation propagation features are observed in the temporal waveform after traveling through the periodic arrays. The enhanced THz transmission can be achieved due to the coupling between incident waves to SPPs at the bottom and top interfaces. The finite element method is used to simulate the field distribution and the transmission mode in the waveguide. The hybrid waveguide with low absorption has great potential applications in THz integrated devices.  相似文献   

10.
设计了一种带有条形间隔的矩形腔结构波导滤波器,并且利用时域有限差分法(FDTD)对其滤波特性进行了分析。结果表明该滤波器可以看成是两个T形腔的背向耦合,其透射性质与单T形腔类似,改变腔的长度和宽度可以改变透射谱的中心波长,以实现不同波长的滤波功能。  相似文献   

11.
X. Gao  L. Ning 《Optik》2012,123(15):1326-1328
The transmission line theory (TLT) and the finite difference time domain (FDTD) method are applied to investigate the optical transmission characteristics of the metal–dielectric–metal (MDM) plasmonic waveguide coupled with a stub structure. The transmission rate of the FDTD simulation results demonstrates periodically variation from less than 1% to more than 92% as a function of the length of the stub, which fits well with the results of TLT. Furthermore, the transmission also performs a periodically switch distribution with the change of the refractive index of the stub from 1.0 to 2.0 gradually. Both methods are adopted for modulating the superposition phase of the interference between the reflected surface plasmon polaritons (SPPs) wave from the end of the stub and the passing SPPs wave in the waveguide, which can be interpreted as the principle mechanism for the optical switch effect of the MDM waveguide with a stub structure.  相似文献   

12.
基于金属表面等离子激元控制光束的新进展   总被引:2,自引:0,他引:2  
表面等离子激元(Surface plasmon polaritons,SPPs)是一种在金属-介质界面上激发并耦合电荷密度起伏的电磁振荡,具有近场增强、表面受限、短波长等特性,在纳米光子学的研究中扮演着重要角色。近年来表面等离子光学和基于SPPs的纳米光子器件的研究引起了国际上科学家们的广泛关注。讨论了SPPs的基本原理和在亚波长结构下的光学特性,介绍了基于亚波长金属结构的表面等离子激元在空间光束准直与聚焦、平面内光束聚焦与传导和在近场纳米光束的控制等方面的研究情况,以及在纳米光子学器件中的潜在应用。  相似文献   

13.
Fan X  Wang GP 《Optics letters》2006,31(9):1322-1324
Propagation of surface plasmon polaritons (SPPs) through a set of nanoscale metal waveguide arrays (MWGAs) is numerically simulated by using the finite-difference time-domain method. The results reveal that MWGAs show an interesting lens effect on SPPs: SPPs can be strongly focused or defocused by the MWGAs, which we attribute to anomalous coupling of SPPs in MWGAs. Our results imply interesting potential for MWGAs in, for example, nonlinear optics, optical imaging, and nanosensing.  相似文献   

14.
The conversion from spatial propagating waves to surface plasmon polaritons (SPPs) has been well studied, and shown to be very efficient by using gradient‐index metasurfaces. However, feeding energies into and extracting signals from functional plasmonic devices or circuits through transmission lines require the efficient conversion between SPPs and guided waves, which has not been reported, to the best of our knowledge. In this paper, a smooth bridge between the conventional coplanar waveguide (CPW) with 50 Ω impedance and plasmonic waveguide (e.g., an ultrathin corrugated metallic strip) has been proposed in the microwave frequency, which converts the guided waves to spoof SPPs with high efficiency in broadband. A matching transition has been proposed and designed, which is constructed by gradient corrugations and flaring ground, to match both the momentum and impedance of CPW and the plasmonic waveguide. Simulated and measured results on the transmission coefficients and near‐filed distributions show excellent transmission efficiency from CPW to a plasmonic waveguide to CPW in a wide frequency band. The high‐efficiency and broadband conversion between SPPs and guided waves opens up a new avenue for advanced conventional plasmonic integrated functional devices and circuits.  相似文献   

15.
基于表面等离子激元理论与金属-介质-金属波导结构提出一个由开口方环共振空腔、挡板及MIM波导组成的波导结构,并使用有限元方法系统地研究了该结构的透射特性.仿真计算结果表明:该结构可以产生法诺共振现象,其共振波长可以通过改变开口方环空腔的长度及开口大小进行调节,该结构敏感度可达1 600nm/RIU,品质因数为1.31×10~5.此外,通过调整方环共振空腔上开口的位置,在波导中产生了双重法诺共振现象,其敏感度可达1 700nm/RIU,品质因数为8.3×10~4.该结构有望在光学集成回路,尤其是纳米生物传感器方面得到比较广泛的应用.  相似文献   

16.
Hu F  Yi H  Zhou Z 《Optics letters》2011,36(8):1500-1502
A compact wavelength demultiplexing structure based on arrayed metal-insulator-metal (MIM) slot cavities is proposed and demonstrated numerically. The structure consists of a bus waveguide perpendicularly coupled with a series of slot cavities, each of which captures SPPs at the resonance frequency from the bus waveguide and tunes the transmission wavelength by changing its geometrical parameters. A cavity theory model is used to design the operating wavelengths of the structure. Moreover, single band transmission of each channel and the adjustable transmission bandwidth can be obtained by altering the drop waveguide positions and the coupling distance. The proposed arrayed slot cavity-based structure could be utilized to develop ultracompact optical wavelength demultiplexing device for large-scale photonic integration.  相似文献   

17.
符平波  陈跃刚 《中国物理 B》2022,31(1):14216-014216
Resonance cavity is a basic element in optics,which has wide applications in optical devices.Coupled cavities(CCs)designed in metal-insulator-metal(MIM)bus waveguide are investigated through the finite difference time domain method and coupled-mode theory.In the CCs,the resonant modes of the surface plasmon polaritons(SPPs)split with the thickness decreasing of the middle baffle.Through the coupled-mode theory analysis,it is found that the phase differences introduced in opposite and positive couplings between two cavities lead to mode splitting.The resonant wavelength of positive coupling mode can be tuned in a large range(about 644 nm)through adjusting the coupling strength,which is quite different from the classical adjustment of the optical path in a single cavity.Based on the resonances of the CCs in the MIM waveguide,more compact devices can be designed to manipulate SPPs propagation.A device is designed to realize flexible multiple-wavelength SPPs routing.The coupling in CC structures can be applied to the design of easy-integrated laser cavities,filters,multiple-wavelength management devices in SPPs circuits,nanosensors,etc.  相似文献   

18.
We investigate the energy transfer of surface plasmon polaritons (SPPs) based on adiabatic passage in a non-Hermitian waveguide composed of three coupled graphene sheets. The SPPs can completely transfer between two outer waveguides via the adiabatic dark mode as the waveguides are lossless and the coupling length is long enough. However, the loss of graphene can lead to breakdown of adiabatic transfer schemes. By utilizing the coupled mode theory, we propose three approaches to cancel the nonadiabatic coupling by adding certain gain or loss in respect waveguides. Moreover, the coupling length of waveguide is remarkably decreased. The study may find interesting application in optical switches on a deep-subwavelength scale.  相似文献   

19.
We report the experimental and theoretical study of the dispersive behavior of surface plasmon polaritons (SPPs) on cylindrical metal surfaces in the terahertz frequency range. Time-domain measurements of terahertz SPPs propagating on metal wires reveal a unique structure that is inconsistent with a simple extrapolation of the high frequency portion of the dispersion diagram for SPPs on a planar metal surface, and also distinct from that of SPPs on metal nanowires observed at visible and near-infrared frequencies. The results are consistent with a numerical solution of Maxwell's equations, showing that the dispersive behavior of SPPs on a cylindrical metal surface at terahertz frequencies is quite different from that of SPPs on a flat surface. These findings indicate the increasing importance of skin effects for SPPs in the terahertz range, as well as the enhancement of such effects on curved surfaces.  相似文献   

20.
Coupled electro-elastic SH waves propagating in a periodic piezoelectric finite-width waveguide are considered in the framework of the full system of Maxwell’s electrodynamic equations. We investigate Bloch–Floquet waves under homogeneous or alternating boundary conditions for the elastic and electromagnetic fields along the guide walls. Zero frequency stop bands, trapped modes as well as some anomalous features due to piezoelectricity are identified. For mixed boundary conditions, by modulating the ratio of the length of the unit cell to the width of the waveguide, the minimum widths of the stop bands can be moved to the middle of the Brillouin zone. The dispersion equation has been investigated also for phonon–polariton band gaps. It is shown that for waveguides at acoustic frequencies, acousto-optic coupling gives rise to polariton behavior at wavelengths much larger than the length of the unit cell but at optical frequencies polariton resonance occurs at wavelengths comparable with the period of the waveguide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号