首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Multi-spanning integral membrane proteins, including G-protein coupled receptors (GPCR), ion channels, and ion transporters, comprise a major class of drug targets. However, despite their vital importance, most molecular structures of membrane proteins remain elusive. This is largely due to lack of effective materials and methods to stabilize their functional conformation for sufficient time. Thus finding optimal surfactants and developing new approaches to study fundamental properties of unstable membrane proteins is urgently needed. In this tutorial review we summarize designer peptides with surfactant properties and their usefulness to stabilize membrane proteins. These peptide surfactants present new opportunities for the stabilization and characterization of diverse membrane proteins. Previous studies on the interaction between surfactant peptides and membrane proteins revealed strategies to design new peptides tailor-made for the stabilization of specific proteins. We review examples of solubilization, purification, long-term stabilization of membrane proteins, and the design principles of peptide sequences. We discuss future trends for exploiting spatial features, thermodynamic parameters, and self-assembling properties to create peptide surfactant structures to facilitate the characterization of diverse membrane proteins.  相似文献   

2.
We demonstrate both theoretically and experimentally that the combination of vibrational spectroscopic techniques on samples can be used to deduce more detailed structural information of interfacial proteins and peptides. Such an approach can be used to elucidate structures of proteins or peptides at interfaces, such as at the solid/liquid interface or in cell membranes. We also discuss that the controlled perturbations may provide more measured parameters for structural studies on such proteins and peptides. In this paper, we will demonstrate that optical spectroscopic techniques such as polarized Fourier transform infrared spectroscopy (FTIR), sum frequency generation (SFG) vibrational spectroscopy, and higher order nonlinear vibrational spectroscopies can be used to deduce different and complementary structural information of molecules at interfaces (e.g., orientation information of certain functional groups and secondary structures of interfacial proteins). Also, we believe that controlled perturbations on samples, such as variation of sample temperature, application of electrical fields, and alternation of substrate roughness, can provide more detailed information regarding the interfacial structures of proteins and peptides. The development of nonlinear vibrational spectroscopies, such as SFG and four-wave mixing vibrational spectroscopy, to examine interfacial protein and peptide structures, and introduction of external perturbations on samples should be able to substantially advance our knowledge in understanding structures and thus functions of proteins and peptides at interfaces.  相似文献   

3.
Luo Z  Zhang S 《Chemical Society reviews》2012,41(13):4736-4754
Chirality is absolutely central in chemistry and biology. The recent findings of chiral self-assembling peptides' remarkable chemical complementarity and structural compatibility make it one of the most inspired designer materials and structures in nanobiotechnology. The emerging field of designer chemistry and biology further explores biological and medical applications of these simple D,L- amino acids through producing marvellous nanostructures under physiological conditions. These self-assembled structures include well-ordered nanofibers, nanotubes and nanovesicles. These structures have been used for 3-dimensional tissue cultures of primary cells and stem cells, sustained release of small molecules, growth factors and monoclonal antibodies, accelerated wound-healing in reparative and regenerative medicine as well as tissue engineering. Recent advances in molecular designs have also led to the development of 3D fine-tuned bioactive tissue culture scaffolds. They are also used to stabilize membrane proteins including difficult G-protein coupled receptors for designing nanobiodevices. One of the self-assembling peptides has been used in human clinical trials for accelerated wound-healings. It is our hope that these peptide materials will open doors for more and diverse clinical uses. The field of chiral self-assembling peptide nanobiotechnology is growing in a number of directions that has led to many surprises in areas of novel materials, synthetic biology, clinical medicine and beyond.  相似文献   

4.
Peptide surfactants are a kind of newly emerged functional materials, which have a variety of applications such as building nanoarchitecture, stabilizing membrane proteins and controlling drug release. In the present study, we report the modelling and prediction of critical aggregation concentration (CAC), an important parameter that characterizes the self-assembling behaviour of peptide surfactants through the use of statistical modelling and quantitative structure–property relationship (QSPR) approaches. In order to accurately describe the structural and physicochemical properties of the highly flexible peptide molecules, a new method called molecular dynamics-based hydrophobic cross-field (MD-HCF) is proposed to capture both the hydrophobic profile and dynamic feature of 32 surface-activity, structure-known peptides. A number of statistical models are then developed using partial least squares (PLS) regression with or without improvement by genetic algorithm (GA). We demonstrate that MD-HCF performs much better than the widely used CODESSA method in both its predictability and interpretability. We also highlight the importance of dynamic hydrophobic property in accurate prediction and reasonable explanation of peptide self-assembling behaviour in solution, albeit which is exhaustive to compute compared with those derived directly from peptide static structure. To the best of our knowledge, this study is the first to computationally model and predict the self-assembling behaviour of peptide surfactants.  相似文献   

5.
Fiber Recruiting (FiRe) peptides are described. These are derivatives of self-assembling fiber (SAF) forming peptides that are conjugated with small molecules (in our case, biotin or a FLAG-tag octapeptide). The FiRe peptides are co-assembled into fibers and used as bait to recruit folded and functional proteins to the fiber surfaces. This was demonstrated using two molecular recognition models: namely, a protein-ligand interaction (biotin-streptavidin) and an antigen-antibody (FLAG octapeptide-anti-FLAG-antibody) interaction. This concept offers an approach to mimicking in natural fibrillar systems, such as collagen or fibrin, that communicate specifically with their environments via incorporated or decorated active peptide and protein components.  相似文献   

6.
Multiphoton fabrication   总被引:1,自引:0,他引:1  
Chemical and physical processes driven by multiphoton absorption make possible the fabrication of complex, 3D structures with feature sizes as small as 100 nm. Since its inception less than a decade ago, the field of multiphoton fabrication has progressed rapidly, and multiphoton techniques are now being used to create functional microdevices. In this Review we discuss the techniques and materials used for multiphoton fabrication, the applications that have been demonstrated, as well as those being pursued. We also consider the outlook for this field, both in the laboratory and in industrial settings.  相似文献   

7.
Self-assembling peptides that are capable of adopting β-sheet structures can generate nanofibers that lead to hydrogel formation. Herein, to tune the supramolecular morphologies, mechanical properties, and stimuli responses of the hydrogels, we investigated glycine substitution in a β-sheet-forming amphiphilic peptide. Glycine substitution generally enhances conformational flexibility. Indeed, glycine substitution in an amphiphilic peptide weakened the hydrogels or even inhibited the gelation. However, unexpectedly, glycine substitution at the center of the peptide molecule significantly enhanced the hydrogel stiffness. The central glycine substitution affected the molecular packing and led to twisted β-sheet structures and to nanofiber bundling, which likely led to the stiffened hydrogel. Importantly, the supramolecular structures were accurately predicted by molecular dynamics simulations, demonstrating the helpfulness of these techniques for the identification of self-assembling peptides. The hydrogel formed by the amphiphilic peptide with the central glycine substitution had cell adhesive function, and showed a reversible thermal gel-to-sol transition. Thus, glycine substitution is effective in modulating self-assembling structures, rheological properties, and dynamics of biofunctional self-assembling peptides.  相似文献   

8.
The current buzzword in science and technology is self‐assembly and molecular self‐assembly is one of the most prominent fields as far as research in chemical and biological sciences is concerned. Generally, self‐assembly of molecules occurs through weak non‐covalent interactions like hydrogen bonding, π–π stacking, hydrophobic effects, etc. Inspired by many natural systems consisting of self‐assembled structures, scientists have been trying to understand their formation and mimic such processes in the laboratory to create functional “smart” materials, which respond to temperature, light, pH, electromagnetic field, mechanical stress, and/or chemical stimuli. These responses are usually manifested as remarkable changes from the molecular (e. g., conformational state, hierarchical order) to the macroscopic level (e. g., shape, surface properties). Many molecules such as peptides, viruses, and surfactants are known to self‐assemble into different structures. Among them, glycolipids are the new entries in the area of molecules that are being investigated for their self‐assembly characteristics. Among the different classes of glycolipids like rhamnolipids and trehalose lipids, owing to their biological preparations and their structural novelty, sophorolipids (SLs) are evoking greater interest among researchers. Sophorolipids are a class of asymmetric bolas bearing COOH groups at one end and sophorose (dimeric glucose linked by an unusual β(1→2) linkage). The extreme membrane stability of Archaea, attributed to the membrane‐spanning bolas (tetraether glycolipids), has inspired chemists to unravel the molecular designs that underpin the self‐assembly of bolaamphiphilic molecules. Apart from these self‐assembled structures, bolaamphiphiles find applications in many fields such as drug delivery, membrane mimicking, siRNA therapies, etc. The first part of this Personal Account presents some possible self‐assembled structures of bolaamphiphiles and their mechanism of formation. The later part covers our work on one of the typical bolaamphiphiles known as sophorolipids.  相似文献   

9.
The chemical synthesis of polypeptide chains >50 amino acids with prescribed sequences is challenging. In one approach, native chemical ligation (NCL), short, unprotected peptides are connected through peptide bonds to render proteins in water. Here we combine chemical ligation with peptide self-assembly to deliver extremely long polypeptide chains with stipulated, repeated sequences. We use a self-assembling fiber (SAF) system to form structures tens of micrometers long. In these assemblies, tens of thousands of peptides align with their N- and C-termini abutting. This arrangement facilitates chemical ligation without the usual requirement for a catalytic cysteine residue at the reactive N-terminus. We introduced peptides with C-terminal thioester moieties into the SAFs. Subsequent ligation and disassembly of the noncovalent components produced extended chains > or =10 microm long and estimated at > or =3 MDa in mass. These extremely long molecules were characterized by a combination of biophysical, hydrodynamic, and microscopic measurements.  相似文献   

10.
The concept of nanoarchitectonics has been proposed as an extensional development of nanotechnology through fusions with material science and the other fields. In nanoarchitectonics, nano-units of atoms, molecules, and nanomaterials are architected into construction of functional material systems. In order to assemble intended structures or hierarchical structures from nano-units, it is more useful to confine nano-units at the interface. In addition, nanoarchitectonics is expected to output functions by harmonizing many units in dynamic environments. However, the liquid interfaces still have lots of unexplored matters in nanoscale because supports by advanced apparatus and techniques in nanotechnology are not always available. Specifically, this review paper summarizes examples of research on molecular manipulation, molecular arrangement and assembly, materials synthesis, and life manipulation at the liquid interface. These examples demonstrate that the liquid interface enables the control of dynamic functions of various size regions, from molecular-level phenomena such as the control of molecular machines to techniques of living creature size such as the control of stem cell differentiation. Liquid interfaces are very useful environments for controlling dynamic functions for a wide range of targets and would have tremendous potential in terms of functional exploration. The great potential of nanoarchitectonics at the liquid interface and the challenges to be solved in the future are also discussed.  相似文献   

11.
A surfactant is briefly defined as a material that can greatly reduce the surface tension of water when used in very low concentrations. Surfactants are usually organic compounds that are amphiphilic, containing both hydrophobic groups and hydrophilic groups. Therefore, they are soluble in both organic solvents and water. Many surfactants can also assemble in the bulk solution into aggregates such as vesicles and micelles. Self-assembling peptides are a novel category of designer peptides that can undergo spontaneous organization into well-ordered nanostructures with the great potentials in nanotechnology, nanomedicine including 3-dimensional (3-D) cell culture, drug delivery, wound repair, and so on. In this review, we introduce a family of designer surfactant-like peptides: the self-assembling peptides which have been derived by mimicking the structure of traditional surfactants.  相似文献   

12.
In order to meet the increasing demands for the development of large varieties of new molecules for discovering new drugs and materials, organic chemists are developing many novel multifunctional building blocks, which are assembled rationally to create ‘nature-like' and yet unnatural organic molecules with well-defined structures and useful properties. Sugar amino acids(SAAs), the carbohydrate derivatives bearing both amino and carboxylic acid functional groups, are important ones of these multifunctional building blocks, which can be used to create novel materials with potential applications as glycomimetics and peptidomimetics. This review will focus on recent synthetic strategies of SAAs and their applications in creating large number of structurally diverse glycomimetics and peptidomimetics.  相似文献   

13.
Utilizing self-assembly to create supramolecular structures is an active area at this time. Hybrid materials created by blending or doping, e.g., organic/inorganic or donor/acceptor complexes are of great interest in the design of novel materials systems. The effect of mixing of any two self-assembling molecules to modify the properties and to understand if the process of blending changes the nature of the self-assembly would be of interest. We discuss here the effect of blending of two (hydrogen bond mediated) self-assembling homologous molecules on the structure and morphology. Materials that are candidate vehicles for phase-change inkjet technology, biscarbamates with alkyl side chains, are chosen for this study. Thermal analysis and IR spectra indicate that, when two biscarbamates differing only in the length of the alkyl chain are blended, the two components are immiscible, although they are chemically similar. There is no intercalation of the alkyl chains and cocrystallization. They are thus an example of a self-sorting system. The extent of hydrogen bonding and the packing of the alkyl chains are not affected. However, each serve as a nucleating agent and reduce the size of the spherulites and crystallinity. The spherulitic growth rate decreases upon blending. Partial melting experiments show that the spherulites of each component do not form independently, but are intermixed, implying that one acts as the nucleating sites for the other. Thus, although these are self-sorting, the components in the mixture affect the morphology of each other upon crystallization. The behavior of this small molecule mixture is compared with those of hydrogen-bonded polymer blends. Studies of this nature on blends of self-assembling molecules are expected to be important in materials design for optimizing properties.  相似文献   

14.
Nucleic acids and proteins, two of nature's biopolymers, assemble into complex structures to achieve desired biological functions and inspire the design of synthetic macromolecules containing a wide variety of noncovalent interactions including electrostatics and hydrogen bonding. Researchers have incorporated DNA nucleobases into a wide variety of synthetic monomers/polymers achieving stimuli-responsive materials, supramolecular assemblies, and well-controlled macromolecules. Recently, scientists utilized both electrostatics and complementary hydrogen bonding to orthogonally functionalize a polymer backbone through supramolecular assembly. Diverse macromolecules with noncovalent interactions will create materials with properties necessary for biomedical applications.  相似文献   

15.
We investigate the dynamical features of the adsorption of diphenylalanine molecules on the Cu(110) surface and of their assembling into supramolecular structures by a combination of quantum and classical atomistic modeling with dynamic scanning tunneling microscopy and spectroscopic experiments. Our results reveal a self-assembling mechanism in which isolated adsorbed molecules change their conformation and adsorption mode as a consequence of their mutual interactions. In particular, the formation of zwitterions after proton transfer between initially neutral molecules is found to be the key event of the assembling process, which stabilizes the supramolecular structures. Because of the constraints on the intermolecular bonds exerted by the surface-molecule interactions, the assembly process is strictly stereoselective, and may suggest a general model for patterning and functionalization of bare metal surfaces with short chiral peptides.  相似文献   

16.
Hybrid biomaterials are systems created from components of at least two distinct classes of molecules, for example, synthetic macromolecules and proteins or peptide domains. The synergistic combination of two types of structures may produce new materials that possess unprecedented levels of structural organization and novel properties. This Review focuses on biorecognition-driven self-assembly of hybrid macromolecules into functional hydrogel biomaterials. First, basic rules that govern the secondary structure of peptides are discussed, and then approaches to the specific design of hybrid systems with tailor-made properties are evaluated, followed by a discussion on the similarity of design principles of biomaterials and macromolecular therapeutics. Finally, the future of the field is briefly outlined.  相似文献   

17.
Protein assembly by orthogonal chemical ligation methods   总被引:4,自引:0,他引:4  
Chemical synthesis harbors the potential to provide ready access to natural proteins as well as to create nonnatural ones. The Staudinger ligation of a peptide containing a C-terminal phosphinothioester with a peptide containing an N-terminal azide gives an amide with no residual atoms. This method for amide bond formation is orthogonal and complementary to other ligation methods. Herein, we describe the first use of the Staudinger ligation to couple peptides on a solid support. The fragment thus produced is used to assemble functional ribonuclease A via native chemical ligation. The synthesis of a protein by this route expands the versatility of chemical approaches to protein production.  相似文献   

18.
Cage-shaped proteins with an affinity for carbonaceous materials were constructed and used to assemble a nanostructure in which single-walled carbon nanotubes are surrounded by cobalt oxide nanoparticles with nanometre gaps. By changing the size of proteins and materials incorporated inside the cavity, similar structures with distinctively different properties can be fabricated.  相似文献   

19.
Biomaterials made from self-assembling, short peptides and peptide derivatives have great potential to generate powerful new therapies in regenerative medicine. The high signaling capacity and therapeutic efficacy of peptidic scaffolds has been established in several animal models, and the development of more complex, hierarchical structures based on peptide materials is underway. This highlight discusses several classes of self-assembling peptide-based materials, including peptide amphiphiles, Fmoc-peptides, self-complementary ionic peptides, hairpin peptides, and others. The self-assembly designs, bioactive signalling strategies, and cell signalling capabilities of these bioactive materials are reported. The future challenges of the field are also discussed, including short-term goals such as integration with biopolymers and traditional implants, and long term goals, such as immune system programming, subcellular targeting, and the development of highly integrated scaffold systems.  相似文献   

20.
Liquid crystals represent a unique class of self-organising systems, which although found in many day-to-day practical material applications, such as displays, are also intimately entwined with living processes. They have the potential, just like living systems, to provide us with a unique vehicle for the development of self-ordering nano- and mesoscopic-engineered materials with specific functional properties. In this article we describe a new concept for the design of self-assembling functional liquid crystals as segmented or "Janus" liquid-crystalline supermolecular materials in the form of structures that contain two different types of mesogenic units, which favour different types of mesophase structure, grafted onto the same star-shaped scaffold to create supermolecules that contain different hemispheres. The materials exhibit chiral nematic and chiral smectic C phases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号