首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
TiO2 and MgF2 thin films were prepared by sol–gel processing. Their microstructure was investigated by scanning electron microscopy, X-ray diffraction and ellipsometric porosimetry as a function of the number of coating-firing cycles with different single layer thicknesses. TiO2/MgF2 multilayers were processed in different stacking sequences; the nucleation of the subsequent material was correlated to the underlying crystal structure and the respective film morphology. It was found that dense crystalline MgF2 films on glass can be manufactured by homoepitaxial growth of multiple thin layers. On an underlying TiO2 layer the effect of densification and crystallization is increased. In the reverse film order no such effect could be observed.  相似文献   

2.
Nanoscale SiO2-TiO2 composite thin films with the thickness of about 100 nm were prepared by sol-gel method at room temperature in air. The chemical states of the elements on the surface and near the surface were measured by XPS. The results showed that the Ti on/near the surface of the thin films existed not only as TiO2 but also as Ti2O3. Part of the TiO2 was changed to Ti2O3 after UV irradiation. The crystalline structure of the TiO2 in the SiO2-TiO2 thin films was anatase with the crystallite size of 14–20 nm. It was found that the thin film prepared at room temperature in air has good superhydrophilic property and has strong adherence to the substrate.  相似文献   

3.
TiO2 thin film photocatalysts coated onto soda lime glass were prepared by a dip coating process using a highly viscous solvent. The source of the TiO2 was tetraisopropyl orthotitanate, and -terpineol was used as the solvent. Two types of thin film preparation procedures based on dip coating (a sol-gel system and thermal decomposition system) were used to prepare the samples. TiO2 thin films were obtained after calcination at 450°C for 1 hour. The film thickness obtained with a single dipping was proportional to the viscosity of the dip coating solutions. The obtained thin films were transparent with a thickness of 1 m. The crystal form of the obtained photocatalyst films was anatase alone. The thin films were formed with aggregated nano-sized TiO2 single crystals (7–15 nm). The photocatalytic activity of the TiO2 thin films, as evaluated by the photooxidation of NO (1 ppm) in dry air, was as high as our previous TiO2 thin films prepared by the sol-gel method.  相似文献   

4.
The photoelectrocatalytic oxidation characteristics of salicylic acid, formic acid and methanol on anodized nanoporous titanium dioxide (TiO2) thin-films were investigated by using electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization techniques. From dark to ultraviolet illumination, the open circuit potential (OCP) and film resistance of TiO2 films decreased markedly. A general equivalent circuit model was proposed for the photoelectrochemical system anodic TiO2 thin-film electrode/test solution. The photoelectrochemical oxidation process of the organic compounds showed similar impedance features at OCP and was controlled by the charge transfer step. According to the polarization curves of the base solution and organic solutions, the kinetic rate curves for the photoelectrocatalytic oxidation of pure organic species were obtained as a function of the potential bias. One photooxidation peak was first observed at a bias potential of ca. 0.26 V for these species with low concentrations.  相似文献   

5.
Titanium dioxide thin films have been synthesized by sol–gel spin coating technique on glass and silicon substrates with and without surfactant polyethylene glycol (PEG). XRD and SEM results confirm the presence of nano-crystalline (anatase) phase at an annealing temperature of 300 °C. The influence of surfactant and annealing temperature on optical properties of TiO2 thin films has been studied. Optical constants and film thickness were estimated by Swanepoel's (envelope) method and by ellipsometric measurements in the visible spectral range. The optical transmittance and reflectance were found to decrease with an increase in PEG percentage. Refractive index of the films decreased and film thickness increased with the increase in percentage of surfactant. The refractive index of the un-doped TiO2 films was estimated at different annealing temperatures and it has increased with the increasing annealing temperature. The optical band gap of pure TiO2 films was estimated by Tauc's method at different annealing temperature.  相似文献   

6.
Anodic oxide films formed potentiostatically on niobium surfaces, from open circuit potential (OCP) to 10 V, were studied by performing in situ and ex situ ellipsometric measurements. The kinetics of the film thickness growth in 1 M H2SO4 and complex indices of refraction of these films were determined. A strong influence of the surface preparation conditions on the complex refractive indices of the metal substrate and anodic oxide films was shown. By steady-state measurements at OCP, a small thickening of the natural air-formed oxide film with chemical composition Nb2O5 in 1 M H2SO4 solution was detected. With cathodic pre-treatment, only partial reduction and small thinning of the natural air-formed oxide film was possible. The thicknesses of the natural air-formed oxide films on fine mechanically polished and electropolished Nb surfaces were determined. The build up of the natural air-formed oxide film, at ex situ conditions, on the already formed anodic oxide films was confirmed. It was shown that electropolishing gives more similar optical surface properties to the bare metal than the fine mechanical polishing. Electronic Publication  相似文献   

7.
A sol?Cgel method was applied for fabrication of nanocrystalline anatase TiO2 thin films on ITO glass substrates and followed by rapid thermal annealing for application as the work electrode for dye-sensitized solar cells (DSSC). TiO2 nanoparticles were characterized by X-ray diffraction (XRD) pattern and scanning electron microscopy (SEM) and the absorption of dye on the TiO2 electrode was shown by UV?Cvis spectroscopy. By controlling different parameters including numbers of coated layers, the gap between two electrodes, sensitization time, and light source power, TiO2-based solar cells with high efficiency was achieved. The results show that a five time spin-coated TiO2 electrode with applying sealant and sensitization time of 24?h in N3 dye under illumination of 100?W?cm?2 tungsten lamp give the optimum power conversion efficiency (??) of 6.61%. The increases in thickness of TiO2 films by increasing the numbers of coated layers can improve adsorption of the N3 dye through TiO2 layers to increase the open-circuit voltage (V oc). However, short-circuit photocurrents (J sc) of DSSCs with a one-coated layer of TiO2 films are smaller than those of DSSCs with five-coated layer of TiO2 films. It could be due to the fact that the increased thickness of TiO2 thin films also resulted in a decrease in the transmittance of TiO2 thin films. Also, this electrode was employed to photoreduce CO2 with H2O under tungsten lamp as light source.  相似文献   

8.
Platinum-loaded titanium oxide thin-film photocatalysts were prepared by using an ionized cluster beam (ICB) deposition method and a RF magnetron sputtering (RF-MS) deposition method as dry processes. From the results of the photocatalytic oxidation of acetaldehyde with O2 under UV light irradiation, small amounts of Pt loading (less than 10 nm film thickness) were found to dramatically enhance the photocatalytic reactivity. However, when TiO2 thin films were loaded with relatively larger amounts of Pt (more than 30 nm as the film thickness), the photocatalytic reactivity became lower than for the pure TiO2 thin films. Moreover, investigations of the ratio of Pt loaded onto the surface of the thin film catalysts by XPS measurements revealed that the small amounts of Pt loaded exist as very small clusters working to efficiently enhance the charge separation, whereas, large amounts of Pt covers the entire surface of the TiO2 thin films, resulting in a decrease of the photocatalytic reactivity.  相似文献   

9.
Anodic oxidation at high efficiency of sputtering‐deposited Ta–Ti alloys containing 0.6–40 at.% Ti is shown to result in amorphous films comprising a relatively thin outer layer of TiO2‐based material and an inner layer consisting of units of TiO2 and Ta2O5. The two layers develop due to the faster migration of Ti4+ ions in the inner layer relative to that of Ta5+ ions. The formation ratios for the various films are in the approximate range 1.6–1.9 nm V?1. The dielectric constants of the films are ~28, which is a similar value to that of anodic tantala. Nanoindentation revealed that the elastic modulus and hardness of the films are essentially independent of film composition, with average values of 134 and 5.3 GPa, respectively. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

10.
Ba(Zr,Ti)O3/LaNiO3 layered thin films have been synthesized by chemical solution deposition (CSD) using metal-organic precursor solutions. Ba(Zr,Ti)O3 thin films with smooth surface morphology and excellent dielectric properties were prepared on Pt/TiO x /SiO2/Si substrates by controlling the Zr/Ti ratios in Ba(Zr,Ti)O3. Chemically derived LaNiO3 thin films crystallized into the perovskite single phase and their conductivity was sufficiently high as a thin-film electrode. Ba(Zr,Ti)O3/LaNiO3 layered thin films of single phase perovskite were fabricated on SiO2/Si and fused silica substrates. The dielectric constant of a Ba(Zr0.2Ti0.8)O3 thin film prepared at 700°C on a LaNiO3/fused silica substrate was found to be approximately 830 with a dielectric loss of 5% at 1 kHz and room temperature. Although the Ba(Zr0.2Ti0.8)O3 thin film on the LaNiO3/fused silica substrate showed a smaller dielectric constant than the Ba(Zr0.2Ti0.8)O3 thin film on Pt/TiO x /SiO2/Si, small temperature dependence of dielectric constant was achieved over a wide temperature range. Furthermore, the fabrication of the Ba(Zr,Ti)O3/LaNiO3 films in alternate thin layers similar to a multilayer capacitor structure was performed by the same solution deposition process.  相似文献   

11.
Homogeneous titanium nitride (TiN) thin film was produced by simple electrophoreic deposition process on Ti substrate in an aqueous suspension of nanosized TiN powder. Nitrogen-doped titanium dioxide (TiO2−xNx) was synthesized by oxidative annealing the resulted TiN thin film in air. Photoelectrochemical measurements demonstrated visible light photoresponse for the electrode of annealed electrophoreic deposited TiN samples. It is found that the synthesized TiO2−xNx electrode showed higher photo potential under white and visible light illumination than the pure TiO2 electrode. The photocurrent under visible light illumination was also observed, which increased with the increase of deposition time of TiN thin films.  相似文献   

12.
This paper evaluates the influence of electric field and deposition time applied on cathodic electrophoretic formation of TiO2 films in organic medium (2-propanol). The film morphology was tracked by measuring the deposited mass and film thickness. The variation in film porosity was correlated with the apparition of surface states distribution in the cyclic voltammetric characterization in the dark, due to grain boundaries defects generated in the contact of the TiO2 particles. The open-circuit voltage decay curves showed that there is no formation of deep energy states inside the band gap of the TiO2. The photopotential of the films increased until a critical thickness but the photocurrents showed to be dependent on operational variables, due to the fact that anodic polarization in thin films increases the electric field generated by the illumination at the ITO/TiO2 interface, favoring the transport of the photogenerated electrons to the rear contact.  相似文献   

13.
Hemoglobin (molecular weight 64.5 kDa, isoelectric point 7.4) in 0.1 M phosphate buffer solution at pH 5.5 readily adsorbs onto mesoporous TiO2 phytate films, which have been formed in a layer-by-layer deposition process from TiO2 nanoparticles (ca. 6–10 nm diameter) and phytic acid at tin-doped indium oxide (ITO) electrodes. Quartz crystal microbalance data, voltammetry, and SEM evidence are consistent with hemoglobin adsorption only into the outer TiO2 phytate surface layer. The size of the tetrametric hemoglobin protein (ca. 6 nm diameter) appears to be too big for a homogeneous film to form.The modified ITO electrode immersed in 0.1 M phosphate buffer solution at pH 5.5 allows reversible electron transfer for hemoglobin to be observed with a midpoint potential of 0.01 vs. SCE. Characteristic TiO2 phytate film thickness and pH effects are observed with both thicker films and lower proton activity causing ‘decoupling’ of the protein redox chemistry due to a reduced electrical conductivity of the TiO2 phytate film connecting hemoglobin with the electrode. This is the first example of a bi-layer nanofilm structure where the underlying TiO2 phytate film controls the electrochemical properties of the hemoglobin modified top-layer.  相似文献   

14.
CeO2·TiO2 thin film is considered as an excellent candidate for a passive ion storage layer due to its good electrochemical stability and comparatively great charge capacitance. When cerium-titanium oxide thin film is adopted as an ion storage layer against cathodic tungsten oxide layer, the electrochromic device shows long term durability and cyclability. Therefore, many researchers investigated the composition and crystallinity effects to the charge density. In our study, we prepared CeO2·TiO2 thin by sol–gel dip-coating method, varying thickness by controlling withdrawal speeds. As investigating results of cyclic voltammetry and chronocoulometry, we found that there are three regions in the film thicknesses: (1) fast lithium ion diffusion region under 100 nm, (2) slow diffusion region in the range of 100 to 150 nm, and (3) fast and great charge capacitance region over 150 nm. In region 1, lithium ions diffuse very fast and reach into indium-tin oxide (ITO) layers, and slow diffusion region follows in region 2, probably due to the remains or impurities within the film, and in region 3, lithium ion diffusion gets fast again, accompanied with charge capacitance increase with thickness.  相似文献   

15.
Ag/TiO2 photocatalytic films were produced by hybrid sol-gel method. The photocatalytic degradation of methyl orange (MO) in aqueous solution under 365 nm irradiation on TiO2 and Ag/TiO2 thin films was investigated. The state and amount of Ag species within the film and the enhancement mechanism of photocatalytic activity of Ag/TiO2 were discussed. With a loading molar ratio of Ag/Ti = 0.135 in TiO2 film, the maximum catalytic efficiency was observed. __________ Translated from Journal of Beijing Normal University (Natural Sciences), 2005, 41(6) (in Chinese)  相似文献   

16.
氧化钼-二氧化钛复合膜的可见光致变色性能研究   总被引:3,自引:0,他引:3  
王静  张光晋  杨文胜  姚建年   《化学学报》2005,63(21):1951-1956
采用溶胶凝胶法制备了一系列氧化钼-二氧化钛纳米复合物, 用柠檬酸作分散剂, 将得到的纳米复合物粉末分散成溶胶, 涂膜制备了具有可见光变色性能的均匀透明的光致变色(λ≥420 nm)复合膜. 通过红外、XPS、ESR测定表明, 在氧化钼、二氧化钛复合界面上生成了Mo—O—Ti键, 此键的存在是该复合膜具有可见光致变色响应的内在原因. 在可见光的照射下, 电子从二氧化钛的价带经由Mo—O—Ti键, 被激发到氧化钼的导带上. 研究了光致变色过程的动力学, 发现光致变色反应的速率取决于膜中复合物的摩尔比([MoO3]/[TiO2])以及电荷转移能量(CTE).  相似文献   

17.
Nanocrystalline titanium oxide thin films have been successfully deposited on IT0 coated glass by pulsed laser ablation of metallic Ti target in 03/02 ambient gases. The intercalation of Li ions in the anatase TiO2 film electrode is examined by cyclic voltammetry. The electrochromic behaviour of TiO2 electrode is investigated byin-situ visible transmittance measurement, and two absorption bands at 420 and 650 nm are observed. The absorption falling and rising in color changing with excellent revisibility is relative to the insertion and deintercalation processes of Li ion. These results suggest that nanocrystalline titanium oxide films fabricated by pulsed laser deposition exhibit excellent spectroelectrochemical property. Project supported by the National Natural Science Foundation of China (Grant No. 29783001) and State Key Laboratory for Physical Chemistry of Solid Surface of Xiamen University (1997).  相似文献   

18.
Densities, ρ, of thin TiO2 layers, produced by reactive evaporation (RE) and ion plating (IP) have been analyzed by means of grazing incidence X-ray reflectometry (GIXR). Depending on the deposition conditions, the layers are amorphous or polycrystalline, with densities between 2.9 g/cm3 and 3.9 g/cm3. Young’s moduli, E, have been analyzed for 280 nm and 500 nm thick layers by means of surface acoustic wave spectroscopy (SAWS) and vary between 65 GPa for RE films and 147 GPa for IP layers. The values are independent of film thickness, but correlate with the density. A phase transition of the TiO2 films from the amorphous state to anatase occurs at temperatures above 210°C and increases the Young’s modulus significantly, whereas the density remains unchanged.  相似文献   

19.
Thin layers of polycrystalline TiO2 were deposited on flaky muscovite and phlogopite particles. Deposition was performed in water slurry using aqueous TiCl4 as titanium source. The effect of heat treatments on the structure of TiO2 thin films was investigated at different layer thicknesses. On muscovite mica the films crystallized as anatase TiO2. On phlogopite mica the increasing layer thickness favored partial rutile formation at higher calcination temperatures, although the films could not be converted to pure rutile. The preferred orientation of the TiO2 films was evident. The most intense reflections were measured from (004) and (105) planes. The crystallite size of TiO2 was strongly dependent on calcination temperature and TiO2 layer thickness. It varied between 15 and 47 nm for films deposited on phlogopite, and 15 and 57 nm for films deposited on muscovite.  相似文献   

20.
Self-organized nanotube arrays of TiO2 have been grown from titanium (Ti) thin films deposited on p-type Si(1 0 0) substrates. Structural and morphological characterizations carried out by X-ray diffraction and scanning electron microcopy indicate that the sputtered crystalline Ti thin films used for subsequent anodization are hexagonally closed packed (hcp-Ti) and show a columnar morphology. Electrochemical anodization of the Ti films was carried out by potentiostatic experiments in 1 M H3PO4 + 1 M NaOH + 0.5 wt% HF electrolyte at room temperature. The TiO2 nanotubes on a semiconductor substrate have an average tube length of approximately 560 nm, diameter in the order of 80 nm and wall thickness approximately 20 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号