首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper examines the unimolecular dissociation of propargyl (HCCCH2) radicals over a range of internal energies to probe the CH+HCCH and C+C2H3 bimolecular reactions from the radical intermediate to products. The propargyl radical was produced by 157 nm photolysis of propargyl chloride in crossed laser-molecular beam scattering experiments. The H-loss and H2 elimination channels of the nascent propargyl radicals were observed. Detection of stable propargyl radicals gave an experimental determination of 71.5 (+5-10) kcal/mol as the lowest barrier to dissociation of the radical. This barrier is significantly lower than predictions for the lowest barrier to the radical's dissociation and also lower than calculated overall reaction enthalpies. Products from both H2+HCCC and H+C3H2 channels were detected at energies lower than what has been theoretically predicted. An HCl elimination channel and a minor C-H fission channel were also observed in the photolysis of propargyl chloride.  相似文献   

2.
The unimolecular dissociation of CH3OOH is investigated by exciting the molecule in the region of its 5nu(OH) band and probing the resulting OH fragments using laser-induced fluorescence. The measured OH fragment rotational and translational energies are used to determine the CH3O-OH bond dissociation energy, which we estimate to be approximately 42.6+/-1 kcal/mol. Combining this value with the known heats of formation of the fragments also gives an estimate for the heat of formation of CH3OOH which at 0 K we determine to be deltaH(f)0=-27+/-1 kcal/mol. This experimental value is in good agreement with the results of ab initio calculations carried out at the CCSD(T)/complete basis set limit which finds the heat of formation of CH3OOH at 0 K to be deltaH(f)0=-27.3 kcal/mol.  相似文献   

3.
Potential-energy surface of the CH3CO + O2 reaction has been calculated by ab initio quantum chemistry methods. The geometries were optimized using the second-order Moller-Plesset theory (MP2) with the 6-311G(d,p) basis set and the coupled-cluster theory with single and double excitations (CCSD) with the correlation consistent polarized valence double zeta (cc-pVDZ) basis set. The relative energies were calculated using the Gaussian-3 second-order Moller-Plesset theory with the CCSD/cc-pVDZ geometries. Multireference self-consistent-field and MP2 methods were also employed using the 6-311G(d,p) and 6-311++G(3df,2p) basis sets. Both addition/elimination and direct abstraction mechanisms have been investigated. It was revealed that acetylperoxy radical [CH3C(O)OO] is the initial adduct and the formation of OH and alpha-lactone [CH2CO2(1A')] is the only energetically accessible decomposition channel. The other channels, e.g., abstraction, HO2 + CH2CO, O + CH3CO2, CO + CH3O2, and CO2 + CH3O, are negligible. Multichannel Rice-Ramsperger-Kassel-Marcus theory and transition state theory (E-resolved) were employed to calculate the overall and individual rate coefficients and the temperature and pressure dependences. Fairly good agreement between theory and experiments has been obtained without any adjustable parameters. It was concluded that at pressures below 3 Torr, OH and CH2CO2(1A') are the major nascent products of the oxidation of acetyl radicals, although CH2CO2(1A') might either undergo unimolecular decomposition to form the final products of CH2O + CO or react with OH and Cl to generate H2O and HCl. The acetylperoxy radicals formed by collisional stabilization are the major products at the elevated pressures. In atmosphere, the yield of acetylperoxy is nearly unity and the contribution of OH is only marginal.  相似文献   

4.
5.
Using a crossed laser-molecular beam scattering apparatus and tunable photoionization detection, these experiments determine the branching to the product channels accessible from the 2-hydroxyethyl radical, the first radical intermediate in the addition reaction of OH with ethene. Photodissociation of 2-bromoethanol at 193 nm forms 2-hydroxyethyl radicals with a range of vibrational energies, which was characterized in our first study of this system ( J. Phys. Chem. A 2010 , 114 , 4934 ). In this second study, we measure the relative signal intensities of ethene (at m/e = 28), vinyl (at m/e = 27), ethenol (at m/e = 44), formaldehyde (at m/e = 30), and acetaldehyde (at m/e = 44) products and correct for the photoionization cross sections and kinematic factors to determine a 0.765:0.145:0.026:0.063:<0.01 branching to the OH + C(2)H(4), H(2)O + C(2)H(3), CH(2)CHOH + H, H(2)CO + CH(3), and CH(3)CHO + H product asymptotes. The detection of the H(2)O + vinyl product channel is surprising when starting from the CH(2)CH(2)OH radical adduct; prior studies had assumed that the H(2)O + vinyl products were solely from the direct abstraction channel in the bimolecular collision of OH and ethene. We suggest that these products may result from a frustrated dissociation of the CH(2)CH(2)OH radical to OH + ethene in which the C-O bond begins to stretch, but the leaving OH moiety abstracts an H atom to form H(2)O + vinyl. We compare our experimental branching ratio to that predicted from statistical microcanonical rate constants averaged over the vibrational energy distribution of our CH(2)CH(2)OH radicals. The comparison suggests that a statistical prediction using 1-D Eckart tunneling underestimates the rate constants for the branching to the product channels of OH + ethene, and that the mechanism for the branching to the H(2)O + vinyl channel is not adequately treated in such theories.  相似文献   

6.
Using a pulse-radiolysis transient UV–VIS absorption system, rate constants for the reactions of F atoms with CH3CHO (1) and CH3CO radicals with O2 (2) and NO (3) at 295 K and 1000 mbar total pressure of SF6 was determined to be k1=(1.4±0.2)×10−10, k2=(4.4±0.7)×10−12, and k3=(2.4±0.7)×10−11 cm3 molecule−1 s−1. By monitoring the formation of CH3C(O)O2 radicals (λ>250nm) and NO2 (λ=400.5nm) following radiolysis of SF6/CH3CHO/O2 and SF6/CH3CHO/O2/NO mixtures, respectively, it was deduced that reaction of F atoms with CH3CHO gives (65±9)% CH3CO and (35±9)% HC(O)CH2 radicals. Finally, the data obtained here suggest that decomposition of HC(O)CH2O radicals via C C bond scission occurs at a rate of <4.7×105 s−1. © 1998 John Wiley & Sons, Inc. Int J Chem Kinet 30: 913–921, 1998  相似文献   

7.
A detailed theoretical survey of the potential energy surface (PES) for the CH2CO + O(3P) reaction is carried out at the QCISD(T)/6‐311+G(3df,2p)//B3LYP/6‐311+G(d,p) level. The geometries, vibrational frequencies, and energies of all stationary points involved in the reaction are calculated at the B3LYP/6‐311+G(d,p) level. More accurate energy information is provided by single‐point calculations at the QCISD(T)/6‐311+G(3df,2p) level. Relationships of the reactants, transition states, intermediates, and products are confirmed by the intrinsic reaction coordinate (IRC) calculations. The results suggest that P1(CH2+CO2) is the most important product. This study presents highlights of the mechanism of the title reaction. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2005  相似文献   

8.
The global environment pollution includes pho-tochemical smog, acid rain and stratospheric ozonedepletion. The short-lived species/radicals in atmos-phere are closely related to these phenomena. Theshort-lived species/radicals bring the photochemicalsmog,…  相似文献   

9.
在G3(MP2)//B3LYP/6-311 G(d,p)水平上,对CH3S自由基与CO气相反应的微观机理进行了理论研究.结果表明:该反应共存在3个反应通道,产物分别为CH3 OCS,CH2S HCO和CH2S HOC.由于形成产物CH3 OCS的活化势垒较低,因此为主要反应通道,这与实验观察到的结果是一致的.  相似文献   

10.
The blackbody infrared radiation induced dissociation of methyl benzoate (C8H8O2(+*)) radical cation was investigated by using a Fourier transfer ion cyclotron resonance mass spectrometer equipped with a resistively heated (wire temperatures of 400-1070 K) wire ion guide. We observed product ion branching ratios that are strongly dependent upon wire temperature. At low temperatures (670-890 K) the major product ion C7H8 (+*) (m/z 92), which is formed by loss of CO2, and at higher temperatures (above 900 K), loss of methoxy radical ((*)OCH3) competes with loss of CO2. The energies of the various reactant ions and transition states for product ion formation were estimated by using density functional theory molecular orbital calculations, and a proposed mechanism for the dissociation chemistry of C8H8O2 (+*) involving a multistep rearrangement reaction is tested using the Master Equation formalism.  相似文献   

11.
Real-time kinetic measurements are reported for the Cl + CH3CO → CH2CO + HCl reaction. The experiments utilize infrared spectroscopy to determine the time dependence of the ketene formed via this reaction and of the CO produced from the subsequent rapid reaction between chlorine atoms and ketene. The reaction is investigated over a pressure range of 10–200 torr and a temperature range of 215–353 K. Within experimental error the rate constant under these conditions is k5a = (1.8 ± 0.5) × 10−10 cm3 s−1. We have also examined the Cl + CH2CO reaction and found it to have a rate constant of k6 = (2.5 ± 0.5) × 10−10 cm3 s−1 independent of temperature. © John Wiley & Sons, Inc. Int J Chem Kinet 29: 421–429, 1997.  相似文献   

12.
The OH-stretch overtone spectroscopy and dynamics of the hydroxymethyl radical, CH(2)OH, are reported in the region of the second and third overtones, which is above the thermochemical threshold to dissociation to H+CH(2)O (D(0)=9600 cm(-1)). The second overtone spectrum at 10 484 cm(-1) is obtained by double resonance IR-UV resonance enhanced multiphoton ionization (REMPI) spectroscopy via the 3p(z) electronic state. It is rotationally resolved with a linewidth of 0.4 cm(-1) and displays properties of local-mode vibration. No dissociation products are observed. The third overtone spectra of CH(2)OH and CD(2)OH are observed at approximately 13 600 cm(-1) by monitoring H-atom photofragments while scanning the excitation laser frequency. No double resonance REMPI spectrum is detected, and no D fragments are produced. The spectra of both isotope analogs can be simulated with a linewidth of 1.3 cm(-1), indicating dissociation via tunneling. By treating the tunneling as one dimensional and using the calculated imaginary frequency, the barrier to dissociation is estimated at about 15 200 cm(-1), in good agreement with theoretical estimations. The Birge-Sponer plot is linear for OH-stretch vibrations 1nu(1)-4nu(1), demonstrating behavior of a one-dimensional Morse oscillator. The anharmonicity parameter derived from the plot is similar to the values obtained for other small OH containing molecules. Isomerization to methoxy does not contribute to the predissociation signal and the mechanism appears to be direct O-H fission via tunneling. CH(2)OH presents a unique example in which the reaction coordinate is excited directly and leads to predissociation via tunneling while preserving the local-mode character of the stretch vibration.  相似文献   

13.
采用直接动力学的方法,对多通道反应体系Br+CH3S(O)CH3进行了理论研究.在BH&H-LYP/6-311G(2d,2p)水平下获得了优化几何构型、频率及最小能量路径(MEP),能量信息的进一步确认在MC-QCISD(单点)水平下完成.利用正则变分过渡态理论,结合小曲率隧道效应校正(CVT/SCT)方法计算了该反应的两个可行的反应通道在200K~2000K温度范围内的速率常数.在整个反应区间内,生成HBr的反应通道与生成CHa的反应通道存在着竞争,前者是主反应通道,后者是次反应通道.变分效应和小曲率隧道效应对反应速率常数的计算影响都很小.理论计算得到的两个反应通道的反应速率常数与实验值符合得很好.  相似文献   

14.
Quasi-classical trajectory (QCT) calculations on a model potential energy surface (PES) show strong deviations from statistical Rice-Ramsperger-Kassel-Marcus (RRKM) rate theory for the decomposition reaction (1) CH3OONO* --> CH3O + NO2, where the highly excited CH3OONO* was formed by (2) CH3O2 + NO --> CH3OONO*. The model PES accurately describes the vibrational frequencies, structures, and thermochemistry of the cis- and trans-CH3OONO isomers; it includes cis-trans isomerization in addition to reactions 1 and 2 but does not include nitrate formation, which is too slow to affect the decay rate of CH3OONO*. The QCT results give a strongly time-dependent rate constant for decomposition and damped oscillations in the decomposition rate, not predicted by statistical rate theory. Anharmonicity is shown to play an important role in reducing the rate constant by a factor of 10 smaller than predicted using classical harmonic RRKM theory (microcanonical variational transition state theory). Master equation simulations of organic nitrate yields published previously by two groups assumed that RRKM theory is accurate for reactions 1 and 2 but required surprising parametrizations to fit experimental nitrate yield data. In the present work, it is hypothesized that the non-RRKM rate of reaction (1) and vibrational anharmonicity are at least partly responsible for the surprising parameters.  相似文献   

15.
The gas-phase free radical displacement reaction has been studied in the temperature range of 240–290°C and at 140°C with the thermal decomposition of azomethane (AM) and di-tert-butylperoxide (DTBP), respectively, as methyl radical sources. The reaction products of the CD3 radicals were analyzed by mass spectrometry. Assuming negligible isotope effects, Arrhenius parameters for the elementary radical addition reaction were derived: The data are discussed with respect to the back reaction and general features of elementary addition reactions.  相似文献   

16.
The kinetics of the reaction between CH3 and HCl was studied in a tubular reactor coupled to a photoionization mass spectrometer. Rate constants were measured as a function of temperature (296–495 K) and were fitted to an Arrhenius expression: k1 = 5.0(±0.7) × 10?13 exp{?1.4(±0.3) kcal mol?1/RT} cm3 molecule?1 s?1. This information was combined with known kinetic parameters of the reverse reaction to obtain Second Law determinations of the methyl radical heat of formation {34.7(±0.6) kcal mol?1} and entropy {46(±2) cal mol?1 K?1} at 298 K. Using the known entropy of CH3, a more accurate Third Law determination of the CH3 heat of formation at this temperature was also obtained {34.8(±0.3) kcal mol?1}. The values of k1 obtained in this study are between those reported in prior investigations. The results were also used to test the accuracy of the thermochemical information which can be obtained from kinetic studies of R + HX (X = Cl, Br, I) reactions of the type described here.  相似文献   

17.
We use a combination of crossed laser-molecular beam experiments and velocity map imaging experiments to investigate the primary photofission channels of chloroacetone at 193 nm; we also probe the dissociation dynamics of the nascent CH(3)C(O)CH(2) radicals formed from C-Cl bond fission. In addition to the C-Cl bond fission primary photodissociation channel, the data evidence another photodissociation channel of the precursor, C-C bond fission to produce CH(3)CO and CH(2)Cl. The CH(3)C(O)CH(2) radical formed from C-Cl bond fission is one of the intermediates in the OH + allene reaction en route to CH(3) + ketene. The 193 nm photodissociation laser allows us to produce these CH(3)C(O)CH(2) radicals with enough internal energy to span the dissociation barrier leading to the CH(3) + ketene asymptote. Therefore, some of the vibrationally excited CH(3)C(O)CH(2) radicals undergo subsequent dissociation to CH(3) + ketene products; we are able to measure the velocities of these products using both the imaging and scattering apparatuses. The results rule out the presence of a significant contribution from a C-C bond photofission channel that produces CH(3) and COCH(2)Cl fragments. The CH(3)C(O)CH(2) radicals are formed with a considerable amount of energy partitioned into rotation; we use an impulsive model to explicitly characterize the internal energy distribution. The data are better fit by using the C-Cl bond fission transition state on the S(1) surface of chloroacetone as the geometry at which the impulsive force acts, not the Franck-Condon geometry. Our data suggest that, even under atmospheric conditions, the reaction of OH with allene could produce a small branching to CH(3) + ketene products, rather than solely producing inelastically stabilized adducts. This additional channel offers a different pathway for the OH-initiated oxidation of such unsaturated volatile organic compounds, those containing a C=C=C moiety, than is currently included in atmospheric models.  相似文献   

18.
These velocity map imaging experiments characterize the photolytic generation of one of the two radical intermediates formed when OH reacts via an addition mechanism with allene. The CH2CCH2OH radical intermediate is generated photolytically from the photodissociation of 2-chloro-2-propen-1-ol at 193 nm. Detecting the Cl atoms using [2+1] resonance-enhanced multiphoton ionization evidences an isotropic angular distribution for the Cl+CH2CCH2OH photofragments, a spin-orbit branching ratio for Cl(2P1/2):Cl(2P3/2) of 0.28, and a bimodal recoil kinetic energy distribution. Conservation of momentum and energy allows us to determine from this data the internal energy distribution of the nascent CH2CCH2OH radical cofragment. To assess the possible subsequent decomposition pathways of this highly vibrationally excited radical intermediate, we include electronic structure calculations at the G3//B3LYP level of theory. They predict the isomerization and dissociation transition states en route from the initial CH2CCH2OH radical intermediate to the three most important product channels for the OH+allene reaction expected from this radical intermediate: formaldehyde+C2H3, H+acrolein, and ethene+CHO. We also calculate the intermediates and transition states en route from the other radical adduct, formed by addition of the OH to the center carbon of allene, to the ketene+CH3 product channel. We compare our results to a previous theoretical study of the O+allyl reaction conducted at the CBS-QB3 level of theory, as the two reactions include several common intermediates.  相似文献   

19.
20.
The visible absorption spectrum of the acetyl radical, CH(3)CO, was measured between 490 and 660 nm at 298 K using cavity ring-down spectroscopy. Gas-phase CH(3)CO radicals were produced using several methods including: (1) 248 nm pulsed laser photolysis of acetone (CH(3)C(O)CH(3)), methyl ethyl ketone (MEK, CH(3)C(O)CH(2)CH(3)), and biacetyl (CH(3)C(O)C(O)CH(3)), (2) Cl + CH(3)C(O)H --> CH(3)C(O) + HCl with Cl atoms produced via pulsed laser photolysis or in a discharge flow tube, and (3) OH + CH(3)C(O)H --> CH(3)CO + H(2)O with two different pulsed laser photolysis sources of OH radicals. The CH(3)CO absorption spectrum was assigned on the basis of the consistency of the spectra obtained from the different CH(3)CO sources and agreement of the measured rate coefficients for the reaction of the absorbing species with O(2) and O(3) with literature values for the CH(3)CO + O(2) + M and CH(3)CO + O(3) reactions. The CH(3)CO absorption spectrum between 490 and 660 nm has a broad peak centered near 535 nm and shows no discernible structure. The absorption cross section of CH(3)CO at 532 nm was measured to be (1.1 +/- 0.2) x 10(-19) cm(2) molecule(-1) (base e).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号