首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper deals with the numerical approximation of the solution of 1D parabolic singularly perturbed problems of reaction-diffusion type. The numerical method combines the standard implicit Euler method on a uniform mesh to discretize in time and a HODIE compact fourth order finite difference scheme to discretize in space, which is defined on a priori special meshes condensing the grid points in the boundary layer regions. The method is uniformly convergent having first order in time and almost fourth order in space. The analysis of the uniform convergence is made in two steps, splitting the contribution to the error from the time and the space discretization. Although this idea has been previously used to prove the uniform convergence for parabolic singularly perturbed problems, here the proof is based on a new study of the asymptotic behavior of the exact solution of the semidiscrete problems obtained after the time discretization by using the Euler method. Some numerical results are given corroborating in practice the theoretical results.  相似文献   

2.
This paper addresses the numerical approximation of solutions to coupled systems of singularly perturbed reaction-diffusion problems. In particular a hybrid finite difference scheme of HODIE type is constructed on a piecewise uniform Shishkin mesh. It is proved that the numerical scheme satisfies a discrete maximum principle and also that it is third order (except for a logarithmic factor) uniformly convergent, even for the case in which the diffusion parameter associated with each equation of the system has a different order of magnitude. Numerical examples supporting the theory are given.  相似文献   

3.
Niall Madden We consider a system of 2 one-dimensional singularly perturbedreaction–diffusion equations coupled at the zero-orderterm. The second derivative of each equation is multiplied bya distinct small parameter. We show how to decompose the solutionto the problem into regular and layer parts. Properties of thediscretized operator are established using discrete Green'sfunctions. We prove that a central difference scheme on certainlayer-adapted meshes converges independently of the perturbationparameters. Supporting numerical examples confirm our theoreticalresults.  相似文献   

4.
We present a high order parameter-robust finite difference method for singularly perturbed reaction-diffusion problems. The problem is discretized using a suitable combination of fourth order compact difference scheme and central difference scheme on generalized Shishkin mesh. The convergence analysis is given and the method is proved to be almost fourth order uniformly convergent in maximum norm with respect to singular perturbation parameter ε. Numerical experiments are conducted to demonstrate the theoretical results.  相似文献   

5.
A uniform finite difference method on a B-mesh is applied to solve the initial-boundary value problem for singularly perturbed delay Sobolev equations. To solve the foresold problem, finite difference scheme on a special nonuniform mesh, whose solution converges point-wise independently of the singular perturbation parameter is constructed and analyzed. The present paper also aims at discussing the stability and convergence analysis of the method. An error analysis shows that the method is of second order convergent in the discrete maximum norm independent of the perturbation parameter. A numerical example and the simulation results show the effectiveness of our theoretical results.  相似文献   

6.
A one-dimensional singularly perturbed problem of mixed type is considered. The domain under consideration is partitioned into two subdomains. In the first subdomain a parabolic reaction-diffusion problem is given and in the second one an elliptic convection-diffusion-reaction problem. The solution is decomposed into regular and singular components. The problem is discretized using an inverse-monotone finite volume method on condensed Shishkin meshes. We establish an almost second-order global pointwise convergence in the space variable, that is uniform with respect to the perturbation parameter.  相似文献   

7.
A non-monotone FEM discretization of a singularly perturbed one-dimensional reaction-diffusion problem whose solution exhibits strong layers is considered. The method is shown to be maximum-norm stable although it is not inverse monotone. Both a priori and a posteriori error bounds in the maximum norm are derived. The a priori result can be used to deduce uniform convergence of various layer-adapted meshes proposed in the literature. Numerical experiments complement the theoretical results. AMS subject classification (2000)  65L10, 65L50, 65L60  相似文献   

8.
In this paper, parameter-uniform numerical methods for a class of singularly perturbed parabolic partial differential equations with two small parameters on a rectangular domain are studied. Parameter-explicit theoretical bounds on the derivatives of the solutions are derived. The solution is decomposed into a sum of regular and singular components. A numerical algorithm based on an upwind finite difference operator and an appropriate piecewise uniform mesh is constructed. Parameter-uniform error bounds for the numerical approximations are established. Numerical results are given to illustrate the parameter-uniform convergence of the numerical approximations.

  相似文献   


9.
In this paper, a parameter‐uniform numerical scheme for the solution of singularly perturbed parabolic convection–diffusion problems with a delay in time defined on a rectangular domain is suggested. The presence of the small diffusion parameter ? leads to a parabolic right boundary layer. A collocation method consisting of cubic B ‐spline basis functions on an appropriate piecewise‐uniform mesh is used to discretize the system of ordinary differential equations obtained by using Rothe's method on an equidistant mesh in the temporal direction. The parameter‐uniform convergence of the method is shown by establishing the theoretical error bounds. The numerical results of the test problems validate the theoretical error bounds.  相似文献   

10.
In this article, we consider a class of singularly perturbed mixed parabolic‐elliptic problems whose solutions possess both boundary and interior layers. To solve these problems, a hybrid numerical scheme is proposed and it is constituted on a special rectangular mesh which consists of a layer resolving piecewise‐uniform Shishkin mesh in the spatial direction and a uniform mesh in the temporal direction. The domain under consideration is partitioned into two subdomains. For the spatial discretization, the proposed scheme is comprised of the classical central difference scheme in the first subdomain and a hybrid finite difference scheme in the second subdomain, whereas the time derivative in the given problem is discretized by the backward‐Euler method. We prove that the method converges uniformly with respect to the perturbation parameter with almost second‐order spatial accuracy in the discrete supremum norm. Numerical results are finally presented to validate the theoretical results.© 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 1931–1960, 2014  相似文献   

11.
Consider the problem with homogeneous Neumann boundary condition in a bounded smooth domain in . The whole range is treated. The Galerkin finite element method is used on a globally quasi-uniform mesh of size ; the mesh is fixed and independent of .

A precise analysis of how the error at each point depends on and is presented. As an application, first order error estimates in , which are uniform with respect to , are given.

  相似文献   


12.
In this paper a singularly perturbed Riccati equation is considered. The problem is solved by using a hybrid finite difference method on a Shishkin mesh. The method is composed of the midpoint upwind scheme and the backward Euler scheme based on the relation between the local mesh width and the perturbation parameter. It is proved that the scheme is almost second-order convergent, in the global maximum norm, independently of the singular perturbation parameter. Numerical experiments support the theoretical results.  相似文献   

13.
In this paper a computational technique is proposed for obtaining a higher order global solution and global normalized flux of singularly perturbed reaction-diffusion two-point boundary-value problems. The HOC (higher order compact) finite difference scheme developed in Gracia et al. (2001) [4] and which is constructed on an appropriate piecewise uniform Shishkin mesh, has been considered to find an almost fourth order convergent solution at mesh points. Using these values, piecewise cubic interpolants based approximations for solution and normalized flux in whole domain have been defined. It has been shown that the global solution and the global normalized flux are also uniformly convergent. Moreover, for the global solution, the order of uniform convergence in the whole domain is optimal, i.e., it is the same as this one obtained at mesh points, whereas, for the global normalized flux, the uniform convergence is almost third order, except at midpoints of the mesh, where it is also almost fourth order. Theoretical error bounds have been provided along with some numerical examples, which corroborate the efficiency of the proposed technique to find good approximations to the global solution and the global normalized flux.  相似文献   

14.
In this work one-dimensional singular perturbation problems with turning points are considered. To resolve these problems numerically we consider a family of finite difference schemes, which includes classical methods in literature, such as the upwind method, the Samarskii method and exponential fitting type methods. Once the uniform convergence of the upwind method on irregular meshes has been established, the same property is easily shown on all the elements of the family.Work supported by a grant of the Diputación General de Aragón.  相似文献   

15.
A semilinear reaction-diffusion equation with multiple solutions is considered in a smooth two-dimensional domain. Its diffusion parameter is arbitrarily small, which induces boundary layers. Constructing discrete sub- and super-solutions, we prove existence and investigate the accuracy of multiple discrete solutions on layer-adapted meshes of Bakhvalov and Shishkin types. It is shown that one gets second-order convergence (with, in the case of the Shishkin mesh, a logarithmic factor) in the discrete maximum norm, uniformly in for . Here is the maximum side length of mesh elements, while the number of mesh nodes does not exceed . Numerical experiments are performed to support the theoretical results.

  相似文献   


16.
A boundary value problem for a singularly perturbed elliptic reaction-diffusion equation in a vertical strip is considered. The derivatives are written in divergent form. The derivatives in the differential equation are multiplied by a perturbation parameter ɛ2, where ɛ takes arbitrary values in the interval (0, 1]. As ɛ → 0, a boundary layer appears in the solution of this problem. Using the integrointerpolational method and the condensing grid technique, conservative finite difference schemes on flux grids are constructed that converge ɛ-uniformly at a rate of O(N 1−2ln2 N 1 + N 2−2), where N 1 + 1 and N 2 + 1 are the number of mesh points on the x 1-axis and the minimal number of mesh points on a unit interval of the x 2-axis respectively. The normalized difference derivatives ɛ k (∂ k /∂x 1 k )u(x) (k = 1, 2), which are ɛ-uniformly bounded and approximate the normalized derivatives in the direction across the boundary layer, and the derivatives along the boundary layer ( k / x 2 k )u(x) (k = 1, 2) converge ɛ-uniformly at the same rate.  相似文献   

17.
The boundary value problem for the singularly perturbed reaction-diffusion parabolic equation in a ball in the case of spherical symmetry is considered. The derivatives with respect to the radial variable appearing in the equation are written in divergent form. The third kind boundary condition, which admits the Dirichlet and Neumann conditions, is specified on the boundary of the domain. The Laplace operator in the differential equation involves a perturbation parameter ?2, where ? takes arbitrary values in the half-open interval (0, 1]. When ? → 0, the solution of such a problem has a parabolic boundary layer in a neighborhood of the boundary. Using the integro-interpolational method and the condensing grid technique, conservative finite difference schemes on flux grids are constructed that converge ?-uniformly at a rate of O(N ?2ln2 N + N 0 ?1 ), where N + 1 and N 0 + 1 are the numbers of the mesh points in the radial and time variables, respectively.  相似文献   

18.
A Dirichlet problem is considered for a singularly perturbed ordinary differential reaction-diffusion equation. For this problem, a new approach is developed in order to construct difference schemes that converge uniformly with respect to the perturbation parameter ?, ? ∈ (0, 1]. The approach is based on the decomposition of a discrete solution into regular and singular components, which are solutions of discrete subproblems on uniform grids. Using the asymptotic construction technique, a difference scheme of the solution decomposition method is constructed that converges ?-uniformly in the maximum norm at the rate O (N ?2 ln2 N), where N + 1 is the number of nodes in the grid used; for fixed values of the parameter ?, the scheme converges at the rate O(N ?2). Using the Richardson technique, an improved scheme of the solution decomposition method is constructed, which converges ?-uniformly in the maximum norm at the rate O(N ?4 ln4 N).  相似文献   

19.
This paper is concerned with a numerical scheme to solve a singularly perturbed convection-diffusion problem. The solution of this problem exhibits the boundary layer on the right-hand side of the domain due to the presence of singular perturbation parameter ε. The scheme involves B-spline collocation method and appropriate piecewise-uniform Shishkin mesh. Bounds are established for the derivative of the analytical solution. Moreover, the present method is boundary layer resolving as well as second-order uniformly convergent in the maximum norm. A comprehensive analysis has been given to prove the uniform convergence with respect to singular perturbation parameter. Several numerical examples are also given to demonstrate the efficiency of B-spline collocation method and to validate the theoretical aspects.  相似文献   

20.
In this paper, we introduce a coupled approach of local discontinuous Galerkin and standard finite element method for solving singularly perturbed convection-diffusion problems. On Shishkin mesh with linear elements, a rate O(N-1lnN) in an associated norm is established, where N is the number of elements. Numerical experiments complement the theoretical results. Moreover, a rate O(N-2ln2N) in a discrete L norm, and O(N-2) in L2 norm, are observed numerically on the Shishkin mesh.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号