首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Zhao S  Xie C  Lu X  Song Y  Liu YM 《Electrophoresis》2005,26(9):1745-1750
It was found that native amino acids enhanced the chemiluminescence (CL) reaction between luminol and BrO(-) in an alkaline aqueous solution. This has led to the development of a facile and highly sensitive CL detection scheme for the determination of amino acids in biological samples after capillary electrophoretic (CE) separation. The CE-CL conditions were optimized. An electrophoretic buffer of 2.5 x 10(-2) M sodium borate (pH 9.4) containing 1 x 10(-4) M luminol was used. The oxidizer solution of 8 x 10(-4) M NaBrO in 0.1 M sodium carbonate buffer solution (pH 12.5) was introduced post-column. Under the optimal conditions, the detection limits were 1.0 x 10(-7) M for glutamic acid (Glu) and 1.3 x 10(-7) M (S/N = 3) for aspartic acid (Asp). The relative standard deviations (RSDs) of peak area and migration time were in the ranges of 3.8-4.3% and 1.4-1.6%, respectively. The present method was applied to the determination of excitatory amino acids (i.e., Asp and Glu) in rat brain tissue and monkey plasma. The levels of these major excitatory amino acids in monkey plasma were quantified for the first time and found to be 1.17 +/- 0.17 x 10(-5) M (mean +/- SD, n = 6) for Glu and 1.64 +/- 0.19 x 10(-6) M for Asp, which were comparable with the levels in human plasma.  相似文献   

2.
Strong adsorption of eremomycin on the fused-silica capillary wall was used for separation of enantiomers by CE. The capillary with adsorbed chiral selector was shown to be easily prepared and has reproducible properties. The effect of the chiral selector concentration, pH and composition of the BGE, and applied voltage on enantioseparation of acidic compounds, such as profens and aromatic carboxylic acids, was investigated. Two native α-amino acids, aspartic acid and glutamic acid, were enantioseparated. Fourteen tested compounds (including amino acids) were baseline resolved. Good selectivity of separation (α>1.09) was achieved. The migration order of ibuprofen and ketoprofen enantiomers was determined. The procedures were proposed for the analysis of flurbiprofen and warfarin in pharmaceuticals. Linearity was achieved in the concentration range of 4.0×10(-5)-2.0×10(-3) M for flurbiprofen and 3.2×10(-6)-4.9×10(-6) M for warfarin. The detection limits were found to be about 1×10(-5) M for flurbiprofen and 1×10(-6) M for warfarin.  相似文献   

3.
The adsorption behavior of various amino acids on a stainless steel surface was investigated at 30 degrees C and over a pH range of 3-10. Acidic and basic amino acids except histidine adsorbed remarkably at pH 3-4 and 7-10, respectively, and showed Langmuir-type adsorption isotherms. The effects of pH and ionic strength on the adsorption isotherms were investigated to analyze the interactions between amino acids and adsorption sites on the stainless steel. Hydrophobic amino acids and glycine showed only small adsorbed amounts at all pHs tested. For the acidic and basic amino acids, reversibility of the absorption and the influence of the ionic strength on the adsorption behavior were examined. The adsorption isotherms of the derivatives of aspartic acid were also measured in order to examine the contribution of the carboxylic groups of acidic amino acids to the adsorption. Furthermore, a Fourier-transform infrared spectroscopic analysis and semiempirical molecular orbital calculation were carried out to analyze the ionization states and the configuration of the amino acids adsorbed on a stainless steel surface. These investigations suggest that the acidic and basic amino acids adsorb through two electrostatic interactions of two ionized groups in the amino acid with a stainless steel surface. Copyright 2000 Academic Press.  相似文献   

4.
The determination of the amino acids proline, histidine, tyrosine, arginine, phenylalanine and tryptophan using flow injection analysis (FIA) with chemiluminescence detection is described. Proline was the only amino acid to exhibit chemiluminescence with the tris(2,2-bipyridyl)ruthenium(III) reaction at pH 10. While, histidine was found to selectively enhance the reaction of luminol with Mn(II) salts in a basic medium. Acidic potassium permanganate chemiluminescence was able to selectively determine tyrosine at pH 6.75. Low pressure separations using a C18 guard column allowed the simultaneous determination of tyrosine and tryptophan or phenylalanine and tryptophan with acidic potassium permanganate and copper(II)-amino acid-hydrogen peroxide chemiluminescence, respectively. Precision for each method was less than 3.9% (R.S.D.) for five replicates of a standard (1×10−5 M) and the detection limits ranged between 4×10−9 and 7×10−6 M. Preliminary investigations revealed that the methodology developed was able to selectively determine the individual amino acids in an equimolar mixture of the 20 naturally occurring amino acids.  相似文献   

5.
Becker A  Scheuch E  Bode U  Jaehde U 《Electrophoresis》2002,23(15):2457-2464
The suitability of micellar electrokinetic chromatography (MEKC) coupled with diode array or laser-induced fluorescence (LIF) detection to analyze the four sulfur-containing excitatory amino acids (SEAA), homocysteine sulfinic acid (HCSA), homocysteic acid (HCA), cysteine sulfinic acid (CSA), and cysteic acid (CA) was investigated. 5-Carboxy-fluorescein succinimidyl ester was chosen as fluorescent reagent to derivatize HCSA, HCA, CSA, and CA. During method development, the yield of reaction dependent on pH and incubation time as well as the stability of the products were analyzed. The maximum yield was obtained after 30 min using a 0.1 M borate buffer (pH 8.9) as derivatization buffer. Each labeled amino acid exhibited high stability at room temperature over a period of 5 days. Baseline separation of labeled HCSA, HCA, CSA, and CA was obtained using a buffer consisting of 0.1 M borate, 50 mM sodium dodecyl sulfate (SDS), and 5% v/v methanol (pH 9.0). By applying LIF detection, limits of detection ranged from 0.9 x 10(-10) M for HCSA to 6.0 x 10(-10) M for CA, respectively. Slightly modified separation conditions enabled the analysis of SEAA in cerebrospinal fluid in the presence of the neurotransmitters glutamate and aspartate. In conclusion, MEKC coupled with LIF detection is a suitable technique for the simultaneous and sensitive analysis of SEAA. Further work will focus on the validation of the method with cerebrospinal fluid as sample matrix.  相似文献   

6.
Cyclic voltammetry and differential pulse voltammetry were used to explore the adsorption behavior of three antibacterial agents at a carbon paste electrode. The drugs were accumulated on a carbon paste electrode, and a well-defined oxidation peak was obtained in acetate buffer (pH 5.0). The adsorptive stripping response was evaluated as a function of some variables such as the scan rate, pH and accumulation time. A simple, precise, inexpensive and sensitive voltammetric method has been developed for the determination of the cited drugs (Lomefloxacin (LFX), Sparfloxacin hydrochloride (SFX), and Gatifloxacin (GFX)). A linear calibration was obtained from 2 x 10(-7) M to 4 x 10(-5) M for LFX, 2 x 10(-7) M to 6 x 10(-5) M for SFX, and GFX. The limits of detection (LOD) were 4.2 x 10(-7), 7 x 10(-7) and 6.6 x 10(-7) M, while the limits of quantification (LOQ) were 1.4 x 10(-6), 2.3 x 10(-6) and 2.2 x 10(-6) M for LFX, SFX, and GFX, respectively. The R. S. D. of five measurements at the 1 x 10(-6) M level were 0.4, 0.5 and 0.3 for LFX, SFX and GFX, respectively. The method was applied to the determination of LFX, SFX and GFX in dilute urine samples and dosage forms, and compared with the HPLC method.  相似文献   

7.
A carbon paste electrode (CPE) chemically modified with 1-[4-(ferrocenyl ethynyl)phenyl]-1-ethanone (4-FEPEMCPE) was employed to study the electrocatalytic oxidation of L-cysteine using cyclic voltammetry, differential pulse voltammetry and double potential step chronoamperometry as diagnostic techniques. The diffusion coefficient (D = 7.863 x 10(-6) cm2 s(-1)) of L-cysteine was also estimated using chronoamperometry. The electron-transfer coefficient, alpha (= 0.40), for L-cysteine at the surface of 4-FEPEMCPE was determined using cyclic voltammetry technique. It was found that under an optimum pH (= 7.00), the oxidation of L-cysteine at the surface of such an electrode occurred at a potential of about 350 mV less positive than that of an unmodified CPE. The catalytic oxidation peak currents represented a linear dependence on the L-cysteine concentration. Linear analytical curves were obtained in the ranges of 9.0 x 10(-5) - 4.9 x 10(-3) M and 2.0 x 10(-5) - 2.8 x 10(-3) M of L-cysteine with correlation coefficients of 0.9981 and 0.9982 in cyclic voltammetry and differential pulse voltammetry, respectively. The detection limits (2 sigma) were determined to be 9.9 x 10(-6) M and 5 x 10(-6) M with cyclic voltammetry and differential pulse voltammetry, respectively. The influences of twenty other amino acids, such as glutamine, L-glutamic acid, L-glysine, L-histidine, L-isoleucine, L-leucine, L-arginine hydrochloride, L-aspargine, L-aspartic acid, S-carboxy methyl-L-cysteine, L-methionine, L-phenyl alanine, L-proline, L-serine, L-threonine, L-cystine, cysteamine and gluthathione, on the current response of the sensor were examined. The obtained results did not show any influence on the analytical signal of L-cysteine by these amino acids (except for cysteamine). The method was also used for the selective determination of L-cysteine in patient-blood plasma and some pharmaceutical preparations by using standard addition method.  相似文献   

8.
The separation of dansylated amino acids and underivatized amino acids in non-aqueous electrolytes was evaluated with direct and indirect UV detection. Different migration orders were achieved for dansylated amino acids in methanol compared to aqueous electrolyte systems. A reversed migration order was observed for some dansylated amino acids. Separation selectivity was different under acidic and basic conditions and was also a function of the solvation properties of the solvent. Underivatized amino acids were separated in basic and acidic electrolytes in methanol; different separation selectivities and, for some amino acids, a reversed migration order were also observed in these electrolyte systems. Analytical merits of the separation of both derivatized and underivatized amino acids were briefly evaluated; detection limits for dansylated amino acids were in the range of 2·10−7–4·10−7 mol/l and, for underivatized amino acids, were 2·10−6–4·10−5 mol/l.  相似文献   

9.
A mixed micellar electrokinetic chromatography method with fluorescence detection was developed to simultaneously monitor gamma-aminobutyric acid (GABA), glutamate (Glu) and alanine (Ala) in biological samples. Amino acids were derivatized with naphthalene-2,3-dicarboxaldehyde (NDA). The separation of three NDA-labeled isomers (GABA, alpha-ABA, beta-ABA) was studied in detail with different micelles solutions such as sodium dodecyl sulfate (SDS), beta-cyclodextrin (beta-CD) and sodium cholate (SC). Simultaneous resolution of GABA, Glu and Ala from 21 amino acids was achieved within 5 min using 20 mM phosphate buffer at pH 8.7 containing 24 mM SC and 26 mM SDS. The detection limits were 4.0 x 10(-8), 1.1 x 10(-8) and 1.3 x 10(-8) M, for GABA, Glu and Ala, respectively, with S/N = 2. The method was applied to monitor the changes of amount of GABA, Glu and Ala in tobacco leaf in response to cold and dark stress.  相似文献   

10.
Ion selective electrodes (ISE) based on three different tripodal receptors (5, 6, and 7) have been investigated for sensing ammonium ion. Each receptor is based on three pyrazole groups that can accept three H-bonds from the bound ammonium ion. The receptor based on 4-bromo-3,5-dimethylpyrazole (6) is the most sensitive with a detection limit for ammonium ion of 2.5 x 10(-5) M at pH 8. The detection limits for the receptors based on 2,3-dimethylpyrazole (5) and unsubstitued pyrazole (7) are 1.0 x 10(-4) and 2.0 x 10(-4) M, respectively. The selectivities of the receptors 5, 6, and 7 for sensing ammonium ion over potassium ion (logK(NH)4+(/K)+) are -2.8, -2.3, and -1.7, respectively. In contrast, the detection limit and the selectivity of a nonactin-based ISE are 2.2 x 10(-5) M and -1.3, respectively. Crystallographic studies reveal that 6 accepts three H-bonds from the bound ammonium and singly protonated receptor 5 forms three H-bonds with the bound water molecule.  相似文献   

11.
Novel PVC membrane electrodes for the determination of betaine ion based on the formation of betaine-tetraphenylborate (Be-TPB) and betaine-phosphotungstate (Be-PT) ion-exchangers as electroactive materials are described. The sensors show a fast, stable, near Nernstian response for 6.92 x 10(-6) to 7.94 x 10(-3) M and 1.0 x 10(-4) to 1.0 x 10(-2) M betaine hydrochloride (Be.Cl) in case of Be-TPB electrode applying batch and flow injection analysis (FIA), respectively, and 2.95 x 10(-5) to 2.26 x 10(-3) M and 3.16 x 10(-5) to 1.0 x 10(-2) M in case of Be-PT electrode for batch and FIA electrodes, respectively, at 25 degrees C over the pH range of 3.5-10 with a cationic slope of 60.2 and 59.1 mV decade(-1) and a fast potential response of < or =15 s. The lower detection limits are 7.94 x 10(-6) and 3.18 x 10(-5) M Be.Cl for Be-TPB and Be-PT electrodes, respectively. Selectivity coefficient data for some common inorganic cations, sugars, amino acids and the components other than betaine, of the mixed drug investigated show negligible interference. The electrodes have been applied to the direct potentiometric determination of betaine hydrochloride in water and in a pharmaceutical preparation under batch and FIA conditions. Potentiometric titrations of Be.Cl with NaTPB and PTA as titrants were monitored with the developed betaine electrodes as an end point indicator electrode. The determination of Be.Cl shows an average recovery of 100.8% with mean relative standard deviation of 0.61%. The effect of temperature on the electrodes was also studied.  相似文献   

12.
Kang TF  Shen GL  Yu RQ 《Talanta》1996,43(11):2007-2013
The permselectivity of neurotransmitters such as dopamine, epinephrine, and norepinephrine at overoxidized polypyrrole (OPPY)-film-coated glassy carbon electrodes has been investigated. The chemically-modified electrodes exhibit attractive permselectivity and antifouling properties of rejecting anionic species, e.g. ascorbate, etc. Compared with the response of neurotransmitters at modified electrodes overoxidized in phosphate buffer solution (pH 7.4), higher sensitivity and reversibility response can be obtained at modified electrodes overoxidized in sodium hydroxide solution. The effect of film thickness on the permselective response was tested. Rotating disk electrode experiments were used to determine the apparent diffusion coefficients of several electroactive solutes in the OPPY films. The influence of the hydrophobicity of the organic ions on the permeability within the polymer films was discussed. Dopamine and epinephrine were determined at the 1 x 10(-6)-1 x 10(-4) M level by means of voltammetry after an exposure period of 2 min in 0.1 M phosphate buffer (pH 7.4) with detection limits of 8 x 10(-7) M and 6 x 10(-7) M respectively.  相似文献   

13.
A pressurized CEC (pCEC) coupled with on-column chemiluminescence (CL) detection was developed for direct determination of amino acids, which was based on the principle of an enhanced effect of Cu(II)-amino acid complexes on the CL reaction between luminol and hydrogen peroxide in alkaline solution. The effects of some important factors on pCEC separation and CL intensity were systemically investigated. Baseline separation of amino acids including L-histidine (L-His), L-threonine (L-Thr), and L-tyrosine (L-Tyr) was achieved by using a monolithic column with a mobile phase of 5.0x10(-3) mol/L phosphate buffer at pH 8.0 that contained 25% v/v methanol and 5.0x10(-4) mol/L luminol and 1.0x10(-5) mol/L Cu(II) at an applied voltage of -5 kV. The calibration curves of the analytes by plotting the peak height against corresponding concentration were linear over the range of 3.2x10(-6)-3.2x10(-4) mol/L for L-His, 4.1x10(-6)-4.1x10(-4) mol/L for L-Thr, and 6.0x10(-7)-3.0x10(-4) mol/L for L-Tyr. The LODs for L-His, L-Thr, and L-Tyr were 6.4x10(-7), 8.4x10(-7), and 3.0x10(-7) mol/L (S/N = 2), respectively. The proposed method was applied to the analysis of amino acid injection sample with satisfactory results. Mean recoveries for three amino acids were from 84.3 to 89.6%.  相似文献   

14.
The electrochemical properties of zopiclone, an anxiolytic and hypnotic drug, have been investigated by different techniques. The compound is reduced in two 2-electron steps in the pH range 0-12. The first step, which corresponds to the reduction of the pyrazine ring, is reversible in acidic and neutral solutions. Strong adsorption phenomena accompany the reduction process in acidic and neutral media. Zopiclone can be quantitatively measured over the entire pH range using DC polarography. However, the use of differential pulse and square-wave modes for quantitative measurements is more limited due to a slope modification in the current-concentration relationship. Adsorptive stripping voltammetry can be applied to the determination of low levels of the drug at pH 9, but only short deposition times may be used because large amounts of material accumulated under stirring conditions due to fast adsorption kinetics are rapidly released from the electrode surface. Detection limits are 1 x 10(-7)M and 2 x 10(-10)M for polarography and adsorptive stripping voltammetry, respectively. Only the first wave is of analytical interest for both techniques.  相似文献   

15.
Yin J  Xu Y  Li J  Wang E 《Talanta》2008,75(1):38-42
A capillary electrophoresis method coupled with electrochemiluminescence detection for the analysis of quinolizidine alkaloids was established, especially, oxymatrine (OMT) which could not be measured by previous electrochemiluminescence methods was detected sensitively herein. Complete separation of sophoridine (SR), matrine (MT) and OMT was achieved within 13 min using a background electrolyte of 50mM phosphate buffer at pH 8.4 and a separation voltage of 15 kV. The calibration curves showed a linear range from 2.8 x 10(-8) to 4.4 x 10(-7) M for SR, 2.7 x 10(-8) to 4.4 x 10(-7) M for MT, and 2.5 x 10(-7) to 4.0 x 10(-6)M for OMT, respectively. The relative standard derivations for all analytes were below 3.1%. Good linear relationships were showed with correlation coefficients for all analytes exceeded 0.987. The detection limits were 1.0 nM for SR and MT, and 40 nM for OMT under the optimal conditions, respectively. The developed method was nearly harmless to the human and environment.  相似文献   

16.
Trace amounts of thorium have been determined in the presence of uranyl nitrate and ammonium diuranate (as interferents) by cyclic voltammetry, differential-pulse polarography, differential-pulse voltammetry, square-wave voltammetry and anodic-stripping voltammetry. The determination is based on the substitution of thorium for copper, lead and cadmium in their EDTA complexes and voltammetric measurement of the displaced metal ion. The detection limits ranged between 2 x 10(-7) and 1 x 10(-6)M (r.s.d. 2-7%) for solutions free from the uranium compounds, and between 8 x 10(-7) and 5 x 10(-6)M (r.s.d. 3-5%) in the presence of the uranium compounds at concentrations up to about 1000 times that of thorium. The detection limits depend on both the particular technique and the EDTA complex employed. Anodic-stripping voltammetry gave detection limits of 8 x 10(-8) and 10(-7)M in the absence and presence of uranium respectively.  相似文献   

17.
Cao L  Wang H  Zhang H 《Electrophoresis》2005,26(10):1954-1962
The analytical potential of a fluorescein analogue, 6-oxy-(N-succinimidyl acetate)-9-(2'-methoxycarbonyl) fluorescein (SAMF), for the first time synthesized in our laboratory, as a labeling reagent for the labeling and determination of amino compounds by capillary electrophoresis (CE) with laser-induced fluorescence (LIF) detection was investigated. Biogenic monoamines and amino acids were chosen as model analytes to evaluate the analytical possibilities of this approach. The derivatization conditions and separation parameters for the biogenic amines were optimized in detail. The derivatization was performed at 30 degrees C for 6 min in boric acid buffer (pH 8.0). The derivatives were baseline-separated in 15 min with 25 mM boric acid running buffer (pH 9.0), containing 24 mM SDS and 12.5% v/v acetonitrile. The concentration detection limit for biogenic amines reaches 8 x 10(-11) mol.L(-1) (signal-to-noise ratio = 3). The application of CE in the analysis of the SAMF-derivatized amino acids was also exploited. The optimal running buffer for amino acids suggested that weak acidic background electrolyte offered better separation than the basic one. The proposed method was applied to the determination of biogenic amines in three different beer samples with satisfying recoveries varying from 92.8% to 104.8%. Finally, comparison of several fluorescein-based probes for amino compounds was discussed. With good labeling reaction, excellent photostability, pH-independent fluorescence (pH 4-9), and the resultant widely suited running buffer pH, SAMF has a great prospect in the determination of amino compounds in CE.  相似文献   

18.
Summary Amino acids in extracts of plant tissue were separated and detected by capillary zone electrophoresis (CZE) with indirect UV detection. Various aromatic carboxylates such as salicylate, benzoate, phthalate and trimellitate were investigated as background electrolytes (BGEs). A BGE of benzoate gave the best resolution and detector response. Amino acids were separated at a highly alkaline pH to charge amino acids negatively. Separation was achieved by the co-electroosmotic flow (Co-EOF) by the addition of the cationic surfactant myristyltrimethyl-ammonium bromide (MTAB) to the electrolyte. The condtions affecting the separation of amino acids, including electrolyte pH, concentrations of both benzoate and MTAB, were investigated and optimised. Separation of a mixture of 17 amino acids at pH 11.20 with indirect UV detection at 225 nm was achieved with a BGE of 10 mM benzoate containing 1.0 mM MTAB at pH of 11.20. Detection limits ranged between 10 and 50 μM. The proposed method was demonstrated by the determination of amino acids in extracts of Eucalypt leaves with direct injection of samples.  相似文献   

19.
The applicability of quenched phosphorescence as a detection mode in capillary electrophoresis (CE) was explored for a number of analyte classes and buffer systems. The detection method is based on the quenching of biacetyl phosphorescence (biacetyl is a constituent of the CE buffer) by the analytes via various mechanisms (energy transfer, electron transfer and, possibly, hydrogen donation) and gives rise to negative peaks in the electropherograms. A number of buffers in the pH range 4.7-11.5, frequently used in CE, were tested for their compatibility with this detection mode. Borate, succinate, malonate, acetate, and phosphate buffers (pH 4.7-8.5) could be used without any problems. With a pH of ca. 8.5 or higher the baseline declined with time, while at a pH higher than 9.5 no signal at all was obtained. Obviously, the noise on the phosphorescence signal (i.e., the baseline) determines the ultimate analyte detection limits (LODs). The baseline signal-to-noise ratio, usually denoted as the dynamic reserve (DR), was enhanced ca. 25-fold compared to direct biacetyl excitation by sensitization of the biacetyl phosphorescence by 1,5-naphthalenedisulfonic acid, and by application of a total emission mirror (TEM). A concentration of 1 x 10(-3) M 1,5-naphthalenedisulfonic acid was found to be optimal. For the buffer systems considered, the DR was typically ca. 300-600 under optimized conditions (noise defined as 1 x sigma). Investigated analytes include naphthalenesulfonic acids (NS), nitrophenols, hydroxybenzoic acids, amino acids, and dithiocarbamates (DTCs.). For most of these, the LODs were in the 10(-7)-10(-8) M range, which is significantly lower than with direct or indirect absorption detection.  相似文献   

20.
Phanquinone (4,7-phenanthroline-5,6-dione) has been investigated as a pre-column derivatization fluorogenic reagent for liquid chromatographic determination of primary amino acids in biological samples. The derivatization reaction was carried out at 68 degrees C both in the presence of aqueous phosphate buffer (pH 8) for 30 min and without buffer for 60 min to allow the determination of basic amino acids (Orn, Lys, Arg). The resulting derivatives were separated under reversed-phase HPLC and detected at lambda(em) = 460 nm with lambda(ex) = 400 nm. The proposed method was validated and applied to the determination of a variety of amino acids directly in urine and after deproteinization with 5-sulfosalicylic acid in plasma samples. The detection and quantitation limits were found in the range 10-450 and 35-1400 fmol, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号