首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present paper reductions of the finite layer mathod once studied in detail by the authors for the elastodynamies of transverse isotropic bodies are given to several special cases. Two-dimensional problems, axisymmetric problems and static problems are discussed, respectively, and this Jinite layer method is also generalized to the problems in which materials possess viscous properties. Two numerical examples have been presented for the axisymmetric case. From these two examples it can be concluded that the finite layer method can be used to analyse semi-infinite layered soils and to deal with the problem of the interaction between soils and structvres.  相似文献   

2.
Assuming the material properties varying with an exponential law both in the thick- ness and radial directions,axisymmetric bending of two-directional functionally graded circular and annular plates is studied using the semi-analytical numerical method in this paper.The de- flections and stresses of the plates are presented.Numerical results show the well accuracy and convergence of the method.Compared with the finite element method,the semi-analytical nu- merical method is with great advantage in the computational efficiency.Moreover,study on ax- isymmetric bending of two-directional functionally graded annular plate shows that such plates have better performance than those made of isotropic homogeneous materials or one-directional functionally graded materials.Two-directional functionally graded material is a potential alter- native to the one-directional functionally graded material.And the integrated design of materials and structures can really be achieved in two-directional functionally graded materials.  相似文献   

3.
A new analytical method is presented to study the axisymmetric Biot's consolidation of a finite soil layer. Starting from the governing equations of axisymmetric Blot's consolidation, and based on the property of Laplace transform, the relation of basic variables for a point of a finite soil layer is established between the ground surface (z= 0) and the depth z in the Laplace and Hankel transform domains. Combined with the boundary conditions of the finite soil layer, the analytical solution of any point in the transform domain can be obtained. The actual solution in the physical domain can be obtained by inverse Laplace and Hankel transforms. A numerical analysis for the axisymmetric consolidation of a finite soil layer is carried out.  相似文献   

4.
The metallic antenna design problem can be treated as a problem to find the optimal distribution of con-ductive material in a certain domain. Although this problem is well suited for topology optimization method, the volu-metric distribution of conductive material based on 3D finite element method (FEM) has been known to cause numerical bottlenecks such as the skin depth issue, meshed“air regions”and other numerical problems. In this paper a topology opti-mization method based on the method of moments (MoM) for configuration design of planar metallic antenna was pro-posed. The candidate structure of the planar metallic antenna was approximately considered as a resistance sheet with position-dependent impedance. In this way, the electromag-netic property of the antenna can be analyzed easily by using the MoM to solve the radiation problem of the resistance sheet in a finite domain. The topology of the antenna was depicted with the distribution of the impedance related to the design parameters or relative densities. The conductive mate-rial (metal) was assumed to have zero impedance, whereas the non-conductive material was simulated as a material with a finite but large enough impedance. The interpola-tion function of the impedance between conductive material and non-conductive material was taken as a tangential func-tion. The design of planar metallic antenna was optimized for maximizing the efficiency at the target frequency. The results illustrated the effectiveness of the method.  相似文献   

5.
This paper presents a new method for topology optimization of geometrical nonlinear compliant mechanisms using the element-free Galerkin method (EFGM). The EFGM is employed as an alternative scheme to numerically solve the state equations by fully taking advantage of its capability in dealing with large displacement problems. In the meshless method, the imposition of essential boundary conditions is also addressed. The popularly studied solid isotropic material with the penalization (SIMP) scheme is used to represent the nonlinear dependence between material properties and regularized discrete densities. The output displacement is regarded as the objective function and the adjoint method is applied to finding the sensitivity of the design functions. As a result, the optimization of compliant mechanisms is mathematically established as a nonlinear programming problem, to which the method of moving asymptotes (MMA) belonging to the sequential convex programming can be applied. The availability of the present method is finally demonstrated with several widely investigated numerical examples.  相似文献   

6.
In this paper, a series of semi-analytical solutions to one-dimensional consolidation in unsaturated soils are obtained. The air governing equation by Fredlund for unsaturated soils consolidation is simplified. By applying the Laplace transform and the Cayley-Hamilton theorem to the simplified governing equations of water and air, Darcy's law, and Fick's law, the transfer function between the state vectors at top and at any depth is then constructed. Finally, by the boundary conditions, the excess pore-water pressure, the excess pore-air pressure, and the soil settlement are obtained under several kinds of boundary conditions with the large-area uniform instantaneous loading. By the Crump method, the inverse Laplace transform is performed, and the semi-analytical solutions to the excess pore-water pressure, the excess pore-air pressure, and the soils settlement are obtained in the time domain. In the case of one surface which is permeable to air and water, comparisons between the semi-analytical solutions and the analytical solutions indicate that the semi-analytical solutions are correct. In the case of one surface which is permeable to air but impermeable to water, comparisons between the semi-analytical solutions and the results of the finite difference method are made, indicating that the semi-analytical solution is also correct.  相似文献   

7.
A new method is developed to solve Biot's consolidation of a finite soil layer in the cylindrical coordinate system. Based on the governing equations of Biot's consolidation and the technique of Laplace transform, Fourier expansions and Hankel transform with respect to time t, coordinate θ and coordinate r, respectively, a relationship of displacements, stresses, excess pore water pressure and flux is established between the ground surface (z = 0) and an arbitrary depth z in the Laplace and Hankel transform domain. By referring to proper boundary conditions of the finite soil layer, the solutions for displacements, stresses, excess pore water pressure and flux of any point in the transform domain can be obtained. The actual solutions in the physical domain can be acquired by inverting the Laplace and the Hankel transforms.  相似文献   

8.
This paper presents a numerical solution to model multiple cracks in a finite plate of an elastic isotropic material. Both the boundaries and the cracks are modeled by distributed dislocations. This method results in a system of singular integral equations with Cauchy kernels which can be solved by Gauss-Chebyshev quadrature method. Four examples are provided to assess the capability of this method.  相似文献   

9.
A semi-analytical and semi-numerical method is proposed for the dynamic analysis of foundations. The Lamb's solution and the approximate formulae were used to establish the relation of the contact force and deflection between the foundation and soil. Therefore, the foundation can be separated from soil and analyzed by FEM as for the static cases. The plate can be treated as that the known forces are acting on the upper surface, and the contact pressure from soil can be represented as the deflection. So that only the plate needs to be divided into elements in the analysis. By this method, a series of vibration problems, including various shapes and rigidities of foundations, different excitation frequencies, were analyzed. Furthermore, it can be used for the embedded foundation. The numerical examples show that this method has simplicity, highly accurate and versatile. It is an effective method for the dynamic analysis of foundations.  相似文献   

10.
The harmonics of plane longitudinal and trans-verse waves in nonlinear elastic solids with up to cubic nonlinearity in a one-dimensional setting are investigated in this paper. It is shown that due to quadratic nonlinearity, a transverse wave generates a second longitudinal harmonic. This propagates with the velocity of transverse waves, as well as resonant transverse first and third harmonics due to the cubic and quadratic nonlinearities. A longitudinal wave generates a resonant longitudinal second harmonic, as well as first and third harmonics with amplitudes that increase linearly and quadratically with distance propagated. In a second investigation, incidence from the linear side of a pri-mary wave on an interface between a linear and a nonlinear elastic solid is considered. The incident wave crosses the interface and generates a harmonic with interface conditions that are equilibrated by compensatory waves propagating in two directions away from the interface. The back-propagated compensatory wave provides information on the nonlinear elastic constants of the material behind the interface. It is shown that the amplitudes of the compensatory waves can be increased by mixing two incident longitudinal waves of appropriate frequencies.  相似文献   

11.
The existence and propagation of transverse surface waves in piezoelectric coupled solids is investigated, in which perfect bonding between a metal/dielectric substrate and a piezoelectric layer of finite-thickness is assumed. Dis- persion equations relating phase velocity to material con- stants for the existence of various modes are obtained in a simple mathematical form for a piezoelectric material of class 6mm. It is discovered and proved by numerical examples in this paper that a novel Bleustein-Gulyaev (B-G) type of transverse surface wave can exist in such piezoelectric cou- pled solid media when the bulk-shear-wave velocity in the substrate is less than that in the piezoelectric layer but greater than the corresponding B-G wave velocity in the same pie- zoelectric material with an electroded surface. Such a wave does not exist in such layered structures in the absence of pie- zoelectricity. The mode shapes for displacement and electric potential in the piezoelectric layer are obtained and discussed theoretically. The study extends the regime of transverse sur- face waves and may lead to potential applications to surface acoustic wave devices.  相似文献   

12.
Based on the three-phase model, the propagation behavior of a matrix crack in an intelligent coating system is investigated by an energy criterion. The effect of the elastic mismatch parameters and the thickness of the interface layer on the ratio of the energy release rate for infinitesimal deflected and penetrated crack is evaluated with the finite element method. The results show that the ratio of the energy release rates strongly depends on the elastic mismatch α1between the substrate and the driving layer.It also strongly depends on the elastic mismatch α2between the driving layer and the sensing layer for a thinner driving layer when a primary crack reaches an interface between the substrate and the driving layer. Moreover, with the increase in the thickness of the driving layer, the dependence on α2gradually decreases. The experimental observation on aluminum alloys monitored with intelligent coating shows that the established model can better explain the behavior of matrix crack penetration and can be used in optimization design of intelligent coating.  相似文献   

13.
This study presents a semi-analytical solution to describe the behavior of shape memory polymers(SMPs) based on the nonlinear thermo-visco-hyperelasticity which originates from the concepts of internal state variables and rational thermodynamics. This method is developed for the finite bending of multilayers in a dual-shape memory effect(SME) cycle. The layer number and layering order are investigated for two different SMPs and a hyperelastic material. In addition to the semi-analytical solution...  相似文献   

14.
Based on the linear theories of thin cylindrical shells and viscoelastic materials, a governing equation describing vibration of a sandwich circular cylindrical shell with a viscoelastic core under harmonic excitation is derived. The equation can be written as a matrix differential equation of the first order, and is obtained by considering the energy dissipation due to the shear deformation of the viscoelastic core layer and the interaction between all layers. A new matrix method for solving the governing equation is then presented With an extended homogeneous capacity precision integration approach. Having obtained these, vibration characteristics and damping effect of the sandwich cylindrical shell can be studied. The method differs from a recently published work as the state vector in the governing equation is composed of displacements and internal forces of the sandwich shell rather than displacements and their derivatives. So the present method can be applied to solve dynamic problems of the kind of sandwich shells with various boundary conditions and partially constrained layer damping. Numerical examples show that the proposed approach is effective and reliable compared with the existing methods.  相似文献   

15.
According to a lemma and an assumption, this paper presents formulae of force at apoint in the interior of a half space with Poisson's ratio v=constant and shear modulus Glinearly varied with depth. These formulae can be used as an approximate basic solutionwhen the integral equation method is employed for the analysis of piles and othergeotechnical engineering problems.  相似文献   

16.
In order to reduce the amount of computation and storage ofdynamic problem,this paper based on[16]is intended to an-alyse damping feature,and study the relations among the dam-ping and the material as well as frequencies and the size ofmesh of finite element,besides giving the estimation theoremof maximum norm and a corollary.Examples have been analyzed numerically with limitednorm.The influence of damping on the dynamic tense stressis assumed to be limited.in value,but it can be both positiveand negative.This means that to regard damping as always tending todecrease the stress incline is incorrect.The feature of“velocity”finite element method is sum-marized further in the paper.Some necessary numerical resultsare given in the appendix.  相似文献   

17.
Although many modeling approaches exist for analyzing the behavior of capacitive micro-machined ultrasonic transducers(CMUTs),the relation equation between the design parameters with input and output is still lacking.What there is can only be used to analyze the dynamic performance of CMUT indirectly and qualitatively,such as stiffness and sound pressure.A lumped-parameter theoretical model based on the dynamic theory is proposed in this paper.The relation equations between the design parameters with inputs and outputs are given.The results obtained by the proposed model agree well with those by finite element method(FEM)simulation.The dynamic and static behavior of CMUT can be clearly depicted,which is helpful for design and optimization iterations.This shows that the proposed model makes it easier to optimize the parameters of a CMUT with respect to output and bandwidth directly and to better understand the influence of each parameter.  相似文献   

18.
Governing equations for a fully coupled flowing-reaction-deformation behavior with mass transfer in heap leaching are developed. The model equations are solved using an explicit finite difference method under the conditions of invariable application rate and constant hydraulic head. The distribution of the degree of the saturation, as well as the distributions of the concentration of the reagent and the solute is given. A cubic relationship between the mineral recovery and the leaching duration is obtained based on the numerical results. The relationship can be used to predict the recovery percentage of the valuable metal.  相似文献   

19.
A theoretical method for static analysis of naturally curved and twisted beams under complicated loads was presented, with special attention devoted to the solving process of governing equations which take into account the effects of torsion-related warping as well as transverse shear deformations. These governing equations, in special cases, can be readily solved and yield the solutions to the problem. The solutions can be used for the analysis of the beams, including the calculation of various internal forces, stresses, strains and displacements. The present theory will be used to investigate the stresses and displacements of a plane curved beam subjected to the action of horizontal and vertical distributed loads. The numerical results obtained by the present theory are found to be in very good agreement with the results of the FEM results. Besides, the present theory is not limited to the beams with a double symmetric cross-section, it can also be extended to those with arbitrary cross-sectional shape.  相似文献   

20.
Transverse waves are a type of structural waves and should be considered in the analy-sis of high frequency vibration because the energy carried by transverse waves increases with the in-crease of frequency and becomes important at high frequencies. This paper studies the estimate theoryand measuring technique of the transverse wave intensity in two dimensional homogeneous structures.In general, the intensity vector is the sum of the effective intensity vector and the intensity variationvector. Each axial intensity component is proportional to two imaginary parts of cross spectral densitiesand its estimate is complicated. For the special case where transverse waves propagate in one direction,the intensity variation is zero and the estimate of the intensity is simplified. The intensity technique isformed based on the finite difference principle. Transverse wave intensity can be measured using a pairof two-transducer arrays lying in the orthogonal direction for the general case or a two-transducer ar-ray lying in the propagating direction for the special case. In order to assess the measurement accuracyof transverse wave intensity, the coupling loss factors from bending to transverse waves in buildingstructures were measured using the intensity technique and compared with the results predicted andmeasured using the conventional method. It is shown that the agreement between the results measuredusing the intensity technique and that by the conventional method is good.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号