首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Methodology is described for the simultaneous determination of D-penicillamine, penicillamine disulfide and the penicillamine-glutathione mixed disulfide, as well as glutathione and glutathione disulfide, in human plasma, erythrocytes and urine. The various thiols and disulfides are separated by reversed-phase ion-pairing liquid chromatography with detection by an electrochemical detector with dual gold/mercury amalgam electrodes in series. The thiols are detected at the downstream electrode; the disulfides are reduced at the upstream electrode and then detected as the thiols at the downstream electrode. Detection limits (at a signal-to-noise ratio of 2.0) are in the picomole range for 20 microliters of injected solution for all compounds except penicillamine disulfide, which has a detection limit of 600 pmol in 20 microliters. A convenient method is described for preparation of the penicillamine-glutathione mixed disulfide by thiol/disulfide exchange with standardization of the solution by 1H NMR spectroscopy.  相似文献   

2.
A new method for the determination of taurine was developed based on indirect amperometric detection after capillary electrophoresis. A serial dual‐electrode detector comprising an on column Pt film electrode (upstream electrode) and an end column Pt microdisk electrode (downstream electrode) was utilized to conduct the indirect amperometric detection. Bromide is oxidized to bromine at upstream electrode and reduced back to bromide at downstream electrode. Since taurine can react with bromine quantitatively and rapidly, its concentration can therefore be determined by the decrease of the current for bromine reduction at the downstream electrode. Principal experimental parameters governing the analytical performance were investigated and optimized. Under the optimal conditions, taurine can be baseline separated from interfering amino acids and the detection limit of 0.18 μM was obtained with a linear correlation coefficient of 0.999 over the concentration range of 0.5–60 μM. The developed method has been successfully applied in the determination of taurine in human tear fluid. The taurine level obtained was in good agreement with previous reports and recoveries for taurine spiked ranged from 92–95% with relative standard deviations within 4.6%, demonstrating the reliability of the developed method in the determination of taurine in human tear fluid.  相似文献   

3.
A method based on capillary electrophoresis with electrochemical detection has been employed for the separation and determination of homocysteine, cysteine, reduced glutathione, ascorbic acid and uric acid. Effects of several important factors such as the acidity and concentration of the running buffer, separation voltage, injection time and detection potential were investigated to acquire the optimum conditions. The detection electrode was a 500 microm diameter platinum disk electrode at a working potential of +1.05 V (vs saturated calomel electrode). The five analytes were well separated within 10 min in a 50 cm long fused silica capillary at a separation voltage of 18 kV in a 100 mm phosphate buffer (pH 7.8). The relation between peak current and analyte concentration was linear over about 3 orders of magnitude with the detection limits (S/N = 3) ranging from 0.83 to 2.58 microm. The proposed method was successfully applied to determine cysteine, reduced glutathione, ascorbic acid and uric acid in human whole blood and rat brain tissues with satisfactory assay results and should find a wide range of bioanalytical applications.  相似文献   

4.
A glass capillary ultramicroelectrode (tip diameter approximately 1.2 microm) having an electrokinetic sampling ability is described. It is composed of a pulled glass capillary filled with an inner solution and three internal electrodes (Pt working and counter electrodes and an Ag/AgCl reference electrode). The voltammetric response of the capillary electrode is based on electrokinetic transport of analyte ions from the sample solution into the inner solution across the conical tip. It was found that the electrophoretic migration of analytes at the conical tip is faster than electroosmotic flow, enabling electrokinetic transport of analyte ions into the inner solution of the electrode. By using [Fe(CN)6]4- and (ferrocenylmethyl)trimethylammonium (FcTMA+) ions as model analytes, differential pulse voltammetric responses of the capillary electrode were investigated in terms of tip diameter of the capillary, sampling voltage, sampling time, detection limit and selectivity. The magnitude of the response depends on the size and charge of analyte ions. With a capillary electrode having a approximately 1.2-microm tip diameter, which minimizes non-selective diffusional entry of analytes, the response after 1 h sampling at +1.7 V is linearly related to [Fe(CN)6]4- concentration in the range of 0.50-5.0 mM with the detection limit of 30 microM. Application of a potential of the same sign as that of the analyte ion forces the analyte to move out from the electrode to the solution, enabling reuse of the same capillary electrode. The charge-selective detection of analytes with the capillary electrode is demonstrated for [Fe(CN)6]4- in the presence of FcTMA+.  相似文献   

5.
A rapid and sensitive high-performance liquid chromatographic method for quantitation of picomole levels of glutathione, glutathione disulfide, cysteine, cystine, cysteinylglycine, cysteinylglycine disulfide and cysteine glutathione-mixed disulfide in biological samples is described. The compounds were separated isocratically on a reversed-phase column by ion-pair chromatography. The mobile phase consisted of an aqueous buffer containing 0.1 M monochloroacetic acid and 3.3 mM 1-heptanesulfonic acid (pH 2.60)-methanol-N,N-dimethylformamide (96.5:3.0:0.5). After chromatographic separation, the disulfides were reduced by a potential (-1.0 V) from a battery, with subsequent detection of all thiols by electrochemical oxidation (+0.15 V) with a dual gold-mercury electrode. Thiol and disulfide concentrations were determined in tissue extracts (liver and kidney) and fluids (bile and plasma) from control rats and rats treated with acivicin, an inhibitor of gamma-glutamyltranspeptidase. A marked increase in biliary glutathione concentration was observed in treated animals with a corresponding decrease in cysteine and cysteinylglycine concentrations. The results demonstrate that this method is useful for measuring glutathione and its degradation products in tissues and fluids.  相似文献   

6.
Sato K  Jin JY  Takeuchi T  Miwa T  Takekoshi Y  Kanno S  Kawase S 《The Analyst》2000,125(6):1041-1043
An indirect amperometric detection of underivatized amino acids has been developed using a carbon film based ring-disk electrode (CFBRDE) in microcolumn liquid chromatography (LC). Bromide present in the mobile phase could be efficiently oxidized to bromine at the upstream (disk) electrode, and was subsequently detected at the downstream (ring) electrode. Most of the underivatized amino acids that are electroinactive under conventional amperometric conditions react rapidly with the electrogenerated bromine, the concentration of amino acids can therefore be indirectly determined by continuously monitoring the reduction current of bromine. The signal monitored at the downstream electrode was largely dependent on the bromide concentration in the mobile phase. Under optimized conditions, the response linearly increased with the concentration for most of the amino acids over a concentration range of 1-100 microM, with a correlation coefficient of 0.990-0.993. The detection limits for most of the amino acids were below 1 microM (0.2 pmol). It was demonstrated that detection with a ring-disk electrode offers the advantages of achieving a much higher collection efficiency caused by a decrease in flow rate in the microcolumn LC.  相似文献   

7.
A capacitively coupled microwave helium plasma with a tubular tantalum electrode was evaluated as an element selective detector for gas chromatography (GC). The end of a 10-m bonded fused capillary column was directly inserted into the tubular electrode without any switching system. A heated copper tube was used to house the part of the GC column that protruded from the oven. The optimisation of operating parameters, line selection, background emission and horizontal and vertical observation position is described. Analytical figures of merit including sensitivity, reproducibility, signal to background ratio, selectivity, dynamic range and limit of detection (LOD), were evaluated for carbon, hydrogen, chlorine and bromine emission. Limits of detection in the low ng range (20 pmol) were obtained for halogenated compounds using carbon emission, whereas LODs in the 0.1 micrograms range (2 nmol) were obtained using chlorine or bromine emission lines.  相似文献   

8.
J Inoue  T Kaneta  T Imasaka 《Electrophoresis》2012,33(17):2743-2747
Here, we report the detection of native amino acids using a sheath-flow electrochemical detector with a working electrode made of copper wire. A separation capillary that was inserted into a platinum tube in the detector acted as a grounded electrode for electrophoresis and as a flow channel for sheath liquid. Sheath liquid flowed outside the capillary to support the transport of the separated analytes to the working electrode for electrochemical detection. The copper wire electrode was aligned at the outlet of the capillary in a wall-jet configuration. Amino acids injected into the capillary were separated following elution from the end of the capillary and detection by the copper electrode. Three kinds of copper electrodes with different diameters-50, 125, and 300 μm-were examined to investigate the effect of the electrode diameter on sensitivity. The peak widths of the analytes were independent of the diameter of the working electrode, while the 300-μm electrode led to a decrease in the signal-to-noise ratio compared with the 50- and 125-μm electrodes, which showed no significant difference. The flow rate of the sheath liquid was also varied to optimize the detection conditions. The limits of detection for amino acids ranged from 4.4 to 27 μM under optimal conditions.  相似文献   

9.
A simple and cost-effective laboratory-made liquid junction interface was used for coupling of CE with MS. In this device the capillary column and the spray tip were positioned in the electrode vessel containing appropriate spray liquid. The electrospray potential was applied on the electrode inside the liquid junction. A stable electrospray was produced at nanoliter per minute flow rates generated in the emitter tip without using an external pump. This arrangement provided high durability of the spray tip and independent optimization of the CE separation (use of coated capillaries) and ESI conditions. CE-MS analysis of mixtures of drugs, peptides, tryptic digests of proteins and biological fluids was optimized with respect to the effects of the distance between the separation capillary and electrospray tip and pressure applied on the liquid junction. The sensitivity of the system, in terms of the LOD (base peak monitoring) was below 10 ng/mL for the beta-blocker drugs and below 200 ng/mL for peptide analysis.  相似文献   

10.
《Electroanalysis》2005,17(21):1991-1994
The development and performance of an end‐column amperometric detection system integrated with disposable screen‐printed electrodes for capillary electrophoresis is presented. In this system, the electrode and capillary can be easily replaced and the capillary/electrode alignment procedure is straightforward. The use of easily replaceable screen‐printed electrodes offers a tremendous benefit for capillary electrophoresis applications requiring frequent replacement of the working electrode due to fouling. This simple and convenient system is very attractive for routine analyses by capillary electrophoresis with electrochemical detection. The separation and determination of uric acid in human urine is presented.  相似文献   

11.
The successful coupling of capillary electrochromatography (CEC) to an ion trap mass spectrometer via a nanoelectrospray interface (nESI) is described. Using a conductively coated tip butted to the end of a CEC column, it was possible to obtain a stable spray without any sheath liquid being employed. Selected small peptides were separated with CEC columns (100 microm i.d./25 cm long) packed with 3 microm Hypersil C8 or C18 bonded silica particles with an eluent composed of ammonium acetate/acetonitrile. Peptide mixtures of desmopressin, peptide A, oxytocin, carbetocin and [Met(5)]-enkephalin were detected in the mid-attomole range, which is the lowest amount analyzed using CEC combined with MS detection. It was also observed that sensitivity can be compromised at higher separation voltages. We demonstrate that CEC/nESI-MS, at the current stage of development, represents one of the most sensitive systems for peptide analysis.  相似文献   

12.
Organic disulfides generally are not oxidized at bare electrodes under conditions that are suited to routine amperometric detection, and thiols are typically oxidized in a manner that leads to partial blockage of the surface. Modification of a carbon electrode with a film of Ru(III,IV) oxide stabilized with cyanocross-links permits the amperometric detection of cystine, cysteine, glutathione, methionine, and glutathione disulfide under conditions compatible with their chromatographic separation on a strong cation-exchange column. Detection limits of 0.2-0.6 microM and linear dynamic ranges of at least 1-50 microM were obtained. The electrode was stable for at least 11 days with a pH 1 citrate, phosphate mobile phase.  相似文献   

13.
The antioxidant ‘reduced glutathione’ tripeptide is conventionally called glutathione (GSH). The oxidized form is a sulfur‐sulfur linked compound, known as glutathione disulfide (GSSG). Glutathione is an essential cofactor for antioxidant enzymes; it provides protection also for the mitochondria against endogenous oxygen radicals. The ratio of these two forms can act as a marker for oxidative stress. The majority of the methods available for estimation of both the forms of glutathione are based on colorimetric and electrochemical assays. In this study, electrochemical sensors were developed for the estimation of both GSH and GSSG. Two different types of transducers were used: i) screen‐printed three‐electrode disposable sensor (SPE) containing carbon working electrode, carbon counter electrode and silver/silver chloride reference electrode; ii) three‐electrode disposable system (CDE) consisting of three copper electrodes. 5,5′‐dithiobis(2‐nitrobenzoic acid) (DTNB) was used as detector element for estimation of total reduced thiol content. The enzyme glutathione reductase along with a co‐enzyme reduced nicotinamide adenine dinucleotide phosphate was used to estimate GSSG. By combining the two methods GSH can also be estimated. The detector elements were immobilized on the working electrodes of the sensors by bulk polymerization of acrylamide. The responses were observed amperometrically. The detection limit for thiol (GSH) was less than 0.6 ppm when DTNB was used, whereas for GSSG it was less than 0.1 ppm.  相似文献   

14.
The on-line electrochemical production of bromine as a reagent for detection in liquid chromatography is studied. For detection, the excess of bromine after reaction with an analyte in the column effluent is measured amperometrically. Phenolic ethers are used as model compounds. The relations between generating current, reaction time, rate constant, signal and noise are investigated. Rate constants were measured in batch experiments with rotating ring-disk electrodes. Lower and upper limits of detection are predicted. Under favourable conditions, detection limits are shown to be in the subnanogram range. The optimal generating current, with respect to sensitivity and selectivity, is discussed in detail. The determination of opiates (morphine, codeine, noscapine and papaverine) is used an example of the efficacy of the method.  相似文献   

15.
Deng Q  Kauri LM  Qian WJ  Dahlgren GM  Kennedy RT 《The Analyst》2003,128(8):1013-1018
A microscale method for purines involved in intracellular signaling and energy metabolism, including ADP, ATP, cyclic-AMP, NADH and GTP, was developed. The analytes were separated on a fused-silica capillary liquid chromatography column (50 microm inner diameter by 25 cm long) packed with 7 microm reversed-phase particles and detected with a carbon fiber cylinder microelectrode at +1.50 V versus Ag/AgCl reference electrode. With an acetonitrile gradient, the separation was carried out within 15 min. With a 100 nl injection volume, the detection limits varied from 0.9 to 8 fmol depending upon the analyte. The low detection limits make the method suitable for analysis of small tissue samples. As a demonstration of the method, islets of Langerhans were analyzed for their adenosine-related messenger content.  相似文献   

16.
The combination of high performance liquid chromatography interfaced on-line with multidimensional gas chromatography (HPLC–GC–GC) is described. The HPLC column was interfaced to the GC via an on column interface, with automated pneumatic control of solvent evaporation and GC column switching. Cryogenic cold trapping was used for analyte focusing at the head of the first, non-polar GC capillary column and optionally at the head of the second, polar column. The determination of stilbene hormones in corned beef as their methylated derivatives by flame ionization detection is described.  相似文献   

17.
Pelletier S  Lucy CA 《The Analyst》2004,129(8):710-713
A liquid chromatography method with indirect fluorescence detection has been developed for simultaneous detection of cysteine, cystine, homocysteine, homocystine, glutathione and glutathione disulfide. After separation in their native forms, a post-column solution of tris(2-carboxyethyl)phosphine (TCEP) at 32 mM, pH 8 is added to reduce the disulfides on-line to the corresponding thiol. The effluent is then merged with a second post-column solution of the highly fluorescent complex Cd(HQS)(2)(2-). The cadmium is complexed by the eluting thiols, effectively quenching the fluorescence. Optimization of the separation, the on-line reduction and the indirect fluorescence detection are discussed. Detection limits from 0.3-4.3 microM (0.04 to 2.6 ppm) are achieved for the six analytes in a 20 min separation.  相似文献   

18.
In the present work, a 2-D capillary liquid chromatography method for fractionation and separation of human salivary proteins is demonstrated. Fractionation of proteins according to their pI values was performed in the 1-D employing a strong anion exchange (SAX) column subjected to a wide-range descending pH gradient. Polystyrene-divinylbenzene (PS-DVB) RP columns were used for focusing and subsequent separation of the proteins in the 2-D. The SAX column was presaturated with a high pH buffer (A) consisting of 10 mM amine buffering species, pH 9.0, and elution was performed with a low pH elution buffer (B) having the same buffer composition and concentration as buffer A, but pH 3.5. Isoelectric point fractions eluting from the 1-D column were trapped on PS-DVB trap columns prior to back-flushed elution onto the PS-DVB analytical column for separation of the proteins. The 1-D fraction eluting at pH 9.0-8.7 was chosen for further analysis. After separation on the RP analytical column, nine RP protein fractions were collected and tryptic digested for subsequent analyses by MALDI TOF MS and column switching capillary LC coupled to ESI TOF MS and ESI QTOF MS. Eight proteins and two peptides were identified in the pH 9.0-8.7 fraction using peptide mass fingerprinting and uninterpreted MS/MS data.  相似文献   

19.
A microchip pressure-driven liquid chromatography (LC) with a packed column and an electrochemical flow cell has been developed by using polystyrene (PS) and poly(dimethylsiloxane) (PDMS). The cylindrical separation column with packed octadecyl silica particles was fabricated in the PS substrate. The three electrode system (working, reference, and counter electrode) for amperometric detection was fabricated onto the PS substrate, using the Au deposition, photolithography, and chemical etching. The detector flow cell was formed by sealing the electrode system with a PDMS chip containing a channel. In this flow cell, the effect of working electrode width (in the direction of flow) on chromatographic parameters, such as peak width and peak resolution were studied in electrode width ranging 50-5,000 microm. The effect of electrode width on sensitivity (current intensity, current density, and S/N ratio) was also examined. The sensitivity was discussed by simulating the concentration profile generated around the working electrode. The effects of the column packing size and the column size on the separation efficiency were examined. In this study, a good separation of three catechins was successfully achieved and the detection limits for (+)-catechin, epicatechin, and epigallocatechin gallate were 350, 450, and 160 nM, respectively.  相似文献   

20.
This paper presents a capillary electrophoresis poly(methyl methacrylate) (PMMA) based microchip for electrochemical detection applications featuring embedded gold nanoelectrode ensemble (GNEE) working and decoupler electrodes. In fabricating the microchip, the GNEE films are pressed directly onto the metallic electrode structures using a hot embossing technique, and the microfluidic channels are then sealed using a low-temperature azeotropic solvent bonding method. The detection performance of the microchip is evaluated using dopamine and catechol analytes for illustration purposes. The experimental results show that the GNEE working electrode provides a significantly higher signal response than that obtained from a bulk gold electrode when applied to the detection of dopamine analyte. Compared to a conventional bulk palladium decoupler electrode, the GNEE decoupler electrode reduces both the amplitude of the charge current (3.5 nA vs. 18.7 nA) and the baseline drift at higher separation voltages. The measured baseline current drift for the microchip equipped the proposed GNEE decoupler electrode is around three times smaller than the microchip with the palladium decoupler electrode under the applied separation electric field from 40 V/cm to 240 V/cm. Finally, when detecting a mixture of 1mM dopamine and 1mM catechol, the calculated signal response of the microchip with a GNEE decoupler electrode is approximately five times higher than that obtained from a microchip with a bulk Pd decoupler electrode, resulting in the detection limit of 1 microM for the proposed GNEE-based microchip device. Overall, the results indicate that the proposed capillary electrophoresis-electrochemical detection (CE-ED) microchip with embedded GNEE working and decoupler electrodes provides an ideal solution for sample detection in lab-on-a-chip and micro total analysis applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号