首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The bromate ion reduction by 12-tungstocobaltate(II) anion has been investigated. The reaction obeys the empirical rate law:-d[reductant]/dt=5(a+b[H+]2)[BrO 3 ][reductant]: where a=(2.49±0.18)×10–4M–1 s–1, b=(4.65±0.20)×10–5M–3s–1 at 24.5±0.1°C [H+]=0.05–1.50M and I=2.0M (NaClO4). This rate law is interpreted in terms of parallel reactions of BrO 3 and H2BrO 3 + . On the basis of the observed anion catalysis, substitution intertness of the reductant and Marcus type linear free energy relations, the outer sphere mechanism is proposed for both pathways.  相似文献   

2.
Summary The kinetics and mechanism of ligand substitution reactions of tetraethylenepentamine nickel(II), Ni (Teren), and triethylenetetraamine nickel(II), Ni(Trien), with 4-(2-pyridylazo)resorcinol (parH2) have been studied spectrophotometrically at I=0.1 M (NaClO4) at 25°C. In both systems two distinct reaction steps are observed. The rapid first step follows the rate law d[Ni(Polyamine)(ParH2)]/dt=k1 [Ni(Polyamine)] [ParH2]. The formation of ternary complexes of Ni (Polyamine) with ParH2 has been investigated under second order equal concentration conditions. The values of second order rate constants for the Trien and Teren reactions are (2.1±0.2)×104 M–1s–1 and (7.8±0.6)×103 M–1s–1 respectively at pH=9.0, I=0.1 M and 25°C.The rate law for the second step may be written as d[Ni(Par)2]/dt=k2[Ni(Polyamine)(ParH2)]. Values of k2 for the Trien and Teren systems are (2.5±0.1)×10–4 s–1 and (4.76±0.3)×10–5 s–1 respectively.  相似文献   

3.
Summary Cyanide ion reacts with [Fe(Par)2]2–,i.e. Par=4-(2-pyridylazo)resorcinol to form a 113 mixed cyanocomplex. The reaction has been studied spectrophotometrically at 720 nm max, pH=11.5±0.02, and I=0.1 M (NaClO4) at 25±0.1°C. The order with respect to cyanide varies from one to two at high and low cyanide concentrations respectively. The rate constants for respective reactions are k1=(6.1±0.3)×10–2 M–1 s–1, k2=(12.6±1.0) M–2 s–1. The reverse reaction does not occur at a measurable rate even in presence of a large excess of Par. These observations suggest that [Fe(Par)2]2– forms a mixed [FePar(CN)3]3– complex in presence of an excess of cyanide ion. The activation parameters for the reaction have been calculated and used to support a three step mechanism consistent with these results. The effect of ionic strength tends further support to the mechanism.  相似文献   

4.
Summary Kinetics and mechanism of formation of a 113 mixed cyano-complex from [FeIII (Par)2] (where Par represents 4-(2-pyridylazo)resorcional) and cyanide ion has been studied spectrophotometrically at 720 nm [max=Fe(III)(Par) 2 ], pH=10.0±0.02, temp=25±0.1°C and 1=0.1 M (NaClO4). The order with respect to cyanidevaries from one to two at high and low cyanide concentrations respectively. The rate constants for respective reactions are k1=10.8±0.6×10–2 M–1 s–1, k2=7.7±0.5 M–2 s–1. The reverse reaction does not occur at a measurable rate even in presence of large excess of par. These observations suggest that FeIII (Par) 2 forms a mixed complex, [FePar(CN)3]2-, in presence of an excess of cyanide ions. A three-step mechanism consistent with these results is proposed. The activation parameters for the reaction have been derived and used to support the proposed mechanism. The effect of ionic strength lends further support to the mechanism.  相似文献   

5.
Summary Organochromium complexes, [CrRL(H2O)]2+] (L = 1,4,8,12-tetraazacyclopentadecane; R = 1°- or 2°-alkyl, or para-substituted benzyl), are oxidized to [CrRL(H2O)]3+, which rapidly decomposes (k 3 > 102 s–1) by homolysis of the Cr-C bond. Rate constants of the oxidation of these complexes by [IrCl6]2– range from 2.20 × 10–1 (R = Me) to 4.60 × 105 (R = 4-MeC6H4CH2)dm3 mol–1 s–1. A very negative reaction constant (–4.3) is found for the oxidation of para-substituted benzlchromium(III) complexes which, in conjunction with the results of product analysis, indicates a [CrIII/R.] type transition state.  相似文献   

6.
The kinetics of acid-catalyzed hydrolysis of the [Co(en)(L)2(O2CO)]+ ion (L = imidazole, 1-methylimidazole, 2-methylimidazole) follows the rate law –d[complex]/dt = {k 1 K[H+]/(1 + K[H+])}[complex] (15–30 or 25–40 °C, [H+] = 0.1–1.0 M and I = 1.0 M (NaClO4)). The reaction course consists of a rapid pre-equilibrium protonation, followed by a rate determining chelate ring opening process and subsequent fast release of the one-end bound carbonato ligand. Kinetic parameters, k 1 and K, at 25 °C are 5.5 × 10–2 s–1, 0.44 M–1 (ImH), 5.1 × 10–2 s–1, 0.54 M–1 (1-Meim) and 3.8 × 10–3 s–1, 0.74 M–1 (2-MeimH) respectively, and activation parameters for k 1 are H1 = 43.7 ± 8.9 kJ mol–1, S1 = –123 ± 30 J mol–1 deg–1 (ImH), H1 = 43.1 ± 0.3 kJ mol–1, S1 = –125 ± 1 J mol–1 deg–1 (1-Meim) and H1 = 64.2 ± 4.3 kJ mol–1, S1 = –77 ± 14 J mol–1 deg–1 (2-MeimH). The results are compared with those for similar cobalt(III) complexes.  相似文献   

7.
Pyrolysis of eicosane and redox reactions of the pyrolysis products in supercritical water (SCW) were studied in a batch reactor at 30 MPa, in the temperature range from 450 to 750 °C and with reaction times ranging from 75 to 600 s. The rate constants for eicosane pyrolysis (k" = 1016.5±0.5exp[–(32000±2000)/T] s–1) and for the formation of H2 (k = 1025±0.8exp[–(64000±4000)/T] s–1) were determined. The time and temperature dependences of the heat of reaction were elucidated. Water accelerates pyrolysis and participates in the subsequent transformations of the pyrolysis products. The yield of H2 sharply increases for T > 700 °C.  相似文献   

8.
Summary The complexestrans-[Ru(NH3)4(H2O)PPh3](PF6)2 and [Ru(NH3)5L](PF6)2, (L=AsPh3 or SbPh3) have been isolated and characterized by microanalysis, cyclic voltammetry and ultraviolet-visible spectroscopy. The specific rate constants for the aquation of [Ru(NH3)5L]2+ totrans-[Ru(NH3)4L(H2O)]2+ are (2.5±0.1)×10–5s–1 and (1.8±0.1)×10–5s–1 for L=AsPh3 and SbPh3, respectively, at 25.0±0.1°C; =0.10 mol dm–3, NaO2CCF3. Under the same conditions, the second-order rate constants for the substitution of water intrans-[Ru(NH3)4(H2O)L]2+ by isonicotinamide (isn) are 1.2±0.1, (6.3±0.3)×10–2 and (3.8±0.2)×10–2 m –1s–1 for L=PPh3, AsPh3, and SbPh3, respectively, suggesting that the order of decreasingtrans-effect is: PPh3AsPh3>SbPh3. The formation constants for thetrans-[Ru(NH3)4L(isn)]2+ complexes are 75±3, (1.40±0.01)×103 and (1.80±0.02)×103M–1 for L=PPh3, AsPh3, and SbPh3, respectively, suggesting that the order of increasingtrans-influence is: SbPh33PPh3.  相似文献   

9.
Summary The reaction of [CrCl3(DMF)3] with C-meso-5, 12-dimethyl-1, 4, 8, 11-tetra-azacyclotetradecane(LM) in DMF gives a mixture ofcis-[CrLMCl2]Cl (ca. 90%) andtrans-[CrLMCl2]Cl (ca. 10%). These complexes are readily separated, as thecis-isomer is insoluble in warm methanol while thetrans-isomer is soluble. Using the dichlorocomplexes as precursors it has been possible to prepare a range ofcis-[CrLMX2]+ complexes (X=Br, NO 3 , N 3 , NCS and X2=bidentate oxalate) and alsotrans-[CrLMX2]+ complexes (X=Br, H2O or NCS). The spectroscopic properties and detailed stereochemistry of the complexes are discussed.The aquation and base hydrolysis kinetics ofcis- andtrans-[CrLMCl2]+ have been studied at 25° C. Base hydrolysis of thecis-complex is extremely rapid with KOH =1.46×105 dm3 mol–1 at 25° C. This unusual reactivity appears to be associated with thetrans II stereochemistry of thesec-NH centres of the macrocycle. Base hydrolysis of thetrans complex with thetrans III chiral nitrogen stereochemistry is quite normal with kOH =1.1 dm3 mol–1 s–1 at 25° C.  相似文献   

10.
Summary The kinetics and mechanism of reactions of cyanide ion with [NiL] and [Ni2L] (L = hexamethylenediaminetetraacetic acid) have been studied spectrophotometrically at 25 ±0.1 °C, with pH=11.0±0.02, and I=0.1 M(NaClO4). In both reactions the final product was [Ni(CN)4]2–. The order with respect to [CN] was found to be one over a wide range of cyanide ion concentrations for both the systems.In the Ni2L-CN system, however, the reaction becomes zero order with respect to cyanide when [CN]<6×10–4 M.  相似文献   

11.
Summary The kinetics of the oxidation of glutathione by diaquatetrakis(2,2-bipyridine)--oxo diruthenium(III) ion in aqueous HClO4 have been investigated. The reaction obeys the empirical rate law:-2d[oxidant]/dt = k[oxidant][reductant]/[H+] where k = 7.42 ± 0.40 × 10-3 s-1 at 25.5 °C, [H+] = 0.005–0.05 M and I = 1.0 M (LiClO4). Free radicals are important in the reaction and a mechanism consistent with the experimental results has been postulated.  相似文献   

12.
Summary In the solid state l-cis-[M(en)2Cl2]Cl [M=cobalt(III) or chromium(III)] undergoes thermal racemisation smoothly at 158 °C without anycis-trans interconversion. The values of krac, H and S are 6 × 10–6s–1, 218 kJM–1 and 156.1 JK–1M–1 for the cobalt(III) complex and 3.5 × 10–5s–1, 229.7 kJM–1 and 197.9 JK–1M–1 for the chromium(III) complex, respectively. The results are only in accord with a rhombic twist mechanism of the type originally proposed by Ray and Dutt for [M(AA)3] complexes.  相似文献   

13.
Summary The kinetics of the reduction of octacyanometallates(IV) in alkaline aqueous medium have been studied spectrophotometrically. The experimental results are in agreement with following rate law:-d[M(CN) inf8 sup3– ]/dt = k obs[M(CN) inf8 sup3– ]2[OH][Na+] where k obs = 4.1 × 10–2M–3s–1 (Mo) and 4.0 × 10–4 M–3 s–1 (W). The rate data were used to calculate the thermodynamic activation parameters H and S . A mechanism of the reaction is discussed.On leave from Faculty of Chemistry, Forest Engineering Institute, Archangelsk, Russia.  相似文献   

14.
The reduction of oxo-chromium(V) salen with a 40–160-fold excess of oxovanadium(IV) ([H+] = 0.02–0.1 M) at 25 °C has been investigated. The observed absorbance changes fitted a pseudo-first-order process. The nature of the intermediate, final product and reaction mechanism have been proposed on the basis of reaction conditions and observed rate constants. E.s.r. data support 1:1 stoichiometry with VO2+ in a deficiency. With an excess of VO2+ a CrIII product corresponding to a two electron reduction process has been obtained. The spectral and ion exchange properties of the chromium product correspond to that of the N,N-ethylene-bis(salicylideneimine) derivative of CrIII. The rate of formation of the final product increases with decreasing [H+]. The observed kinetic behavior is consistent with a mechanism involving the formation of a CrIV—VV intermediate in an equilibrium step prior to the electron transfer step. The equilibrium constant for the formation of the intermediate has been estimated to be 11.2 ± 0.8 M–1. The second-order-rate constants for the reduction of CrV species have been estimated to be 0.14 × 102, 0.10 × 102 and 0.05 × 102 M–1 S–1 at [H+] = 0.02, 0.05 and 0.1 M respectively. Like the FeII—CrV redox couple, the VIV—CrV redox reaction also follows an inner-sphere process.  相似文献   

15.
Summary The kinetics of reaction between [Fe(CN)5OH]3– and CN have been investigated spectrophotometrically at pH=11.00, I=0.25 M(NaClO4) and temp.=25.0°C by disappearance of the absorption peak at 395 nm. The rate data for this reaction followed first order kinetics in both [Fe(CN)5OH3–] and [CN]. The second order rate constant (kf) was found to be (3.44±0.08)×10–3 M–1 s–1. The pH dependence of the reaction was also investigated in the range 9–12. The activation parameters were found to be H=36.4kJ mol–1 and S=–168JK–1 mol–1.The reaction between [Fe(CN)6]3– and TTHA6– (TTHA=triethylenetetraaminehexaacetic acid) has also been followed spectrophotometrically at 420 nm, pH=11.00, I=0.1M (NaClO4) and temp.=25.0°C. This reaction also followed first order kinetics in both [Fe(CN) 6 3– ] and [TTHA6–]. The second order rate constant (kf) was found to be (3.74±0.21)×10–2 M–1 s–1. The rate of reaction was found to increase with pH in the range 9–11.5. The different reactive species of TTHA (L) are H2L4– HL5– and L6–. The rate constants for these species have been calculated and the pH profile is explained. The values of the activation parameters were found to be H= 30.9 kJmol–1 and S=–167JK–1 mol–1. Electron transfer from [Fe(CN)6]3– to the substrate followed by decomposition of the latter is proposed. The oxidation products of TTHA have been investigated by g.l.c.  相似文献   

16.
Summary In NH4NO3+NH4OH buffered 10% (v/v) dioxan-water media (pH 7.0–8.5), thePseudo-first-order rate constant for the formation of the title complexes M(baen),i.e. ML, conforms to the equation 1/kobs=1/k+1/(kKo.s · TL), where TL stands for the total ligand concentration in the solution, Ko.s is the equilibrium constant for the formation of an intermediate outer sphere complex and k is the rate constant for the formation of the complex ML from the intermediate. Under the experimental conditions the free ligand (pKa>14) exists virtually exclusively in the undissociated form (baenH2 or LH2) which is present mostly as a keto-amine in the internally hydrogen-bonded state. Although the observed formation-rate ratio kCu/kNi is of the order of 105, as expected for systems having normal behaviour, the individual rate constants are very low (at 25°C, kCu=50 s–1 and kNi=4.7×10–4s–1) due to the highly negative S values (–84.2±3.3 JK–1M–1 for CuL and –105.8±4.1 JK–1M–1 for NiL); the much slower rate of formation of the nickel(II) complex is due to higher H value (41.2±1.0 kJM–1 for CuL and 78.2±1.2 kJM–1 for NiL) and more negative S value compared to that of CuL. The Ko.s values are much higher than expected for simple outer-sphere association between [M(H2O)6] and LH2 and may be due to hydrogen bonding interaction.In acid media ([H+], 0.01–0.04 M) these complexes M(baen) dissociate very rapidly into the [M(H2O)6]2+ species and baenH2, followed by a much slower hydrolytic cleavage of the ligand into its components,viz. acetylacetone and ethylenediamine (protonated). For the dissociation of the complexes kobs=k1[H+]+k2[H+]2. The reactions have been studied in 10% (v/v) dioxan-water media and also ethanolwater media of varying ethanol content (10–25% v/v) and the results are in conformity with a solvent-assisted dissociativeinterchange mechanism involving the protonated complexes.  相似文献   

17.
Summary The kinetics of the reaction between [MoO2(CN)4]4– and F have been studied in the pH range 8 to 11. The results indicated that the diprotonated form, [MoO(OH2)(CN)4]2–, is the only reactive species and that the aqua-ligand is substituted by the F ion according to the following reaction. The k1 and k–1 values are 8.8(2) M–1 s–1 and 0.6(1)s–1, respectively, at 15°C. A dissociative substitution process is proposed.  相似文献   

18.
Pulse radiolysis was utilized to study the iodine — hydrazine reaction in aqueous solutions of pH3 to 7, at I concentrations of 0.02 to 0.34M, and a constant ionic strength of 0.35M. The reaction rate was found to be proportional to [H+]–1 and [I]–1. Experimental results support the assumption that the rate-determining step is the reaction of I2 with N2H4 with a rate constant K1.2×107 M–1s–1.  相似文献   

19.
The influence of NaClO4, NaCl and Na2SO4 on the oxidation of Fe(phen) 3 2+ by Ce(IV) was investigated by means of the stopped-flow method. At the concentrations range of NaClO4 and NaCl 0.1–1.0M the rate constant values decrease from 1.03·105 to 0.56·105M–1s–1 and from 1.08·105 to 0.81·105M–1s–1 respectively.In varying concentrations of Na2SO4 solutions (0.05–0.35M) the rate constant values decrease from 1.05·105M–1s–1 to 0.45·105M–1s–1.Taking into account the negative salt effect the mechanism of the reaction progress is proposed.
  相似文献   

20.
Summary The kinetics and mechanism of the reaction between [Fe2L(OH)2]2– and cyanide ion (L = TTHA, triethylenetetraaminehexaacetate) have been studied spectrophotometrically atpH=11.0±0.1,I=0.1 M(NaClO4) and T = 25±0.1 °C. The overall reaction consists of three distinct, observable stages. The first stage involves the dissociation of the binuclear complex into a mononuclear complex [FeL(OH)]4– which then reacts with cyanide to form [Fe(CN)5OH]3–. The species [Fe(CN)5OH]3– reacts further with an excess of cyanide and forms [Fe(CN)6]3– in the second stage of reaction. The last stage involves the reduction of [Fe(CN)6]3– formed in the second stage by the TTHA6– released in the first stage of reaction. The formation of [Fe(CN)5OH]3– in the first stage is firstorder in [Fe2L(OH)2]2– and third-order in cyanide over a large range of cyanide concentrations but becomes zero-order in cyanide at [CN] < 4×10–2M.These observations enable us to suggest the presence of a slow step in which [Fe2L(OH)2]2– dissociates into [FeL(OH)]4– and [FeOH]2+ at low cyanide concentrations and a cyanide assisted rapid dissociation of [Fe2L(OH)2]2– to [FeL(OH)(CN)]5– at higher cyanide concentrations. The species [FeL(OH)(CN)]5– reacts further with an excess of cyanide to produce [Fe(CN)5OH]3– finally.The reverse reaction between [Fe(CN)5OH]3– and TTHA6– follows first-order dependence in each of [Fe(CN)5OH]3– and TTHA6– and inverse first-order dependence on cyanide concentration. A six-step mechanism has been proposed for the first stage of reaction in which the fifth has been identified as the rate-determining step.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号