首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Erythrocyte acid phosphatase (EAP), esterase D (ESD) and phosphoglucomutase (PGM) phenotypes among the erythrocyte enzyme types of blood groups are surveyed and a modified cellulose acetate membrane isoelectric focusing (CAM-IEF) method for their exploration is described. The phenotyping procedures are usually classified as either equilibrium or non-equilibrium IEF. Equilibrium IEF, which is based on differences in pI values, includes three methods: (i) a narrow pH range of carrier ampholytes, (ii) a relatively narrow pH range of carrier ampholytes containing chemical separators and (iii) immobilized pH gradient gels. Among the three methods, immobilized pH gradients provides a better resolution of isozymes. Conversely, the disadvantages of immobilized pH gradients include longer focusing times and complex gel preparations. Moreover, immobilized pH gradients are unsuitable for stain analysis because of the insensitivity of PGM1 detection. A hybrid IEF system and a commercial immobilized pH gradient dry plate have overcome these problems. However, EAP typing is extremely expensive and ESD typing is not well distinguished by hybrid IEF. As each method has both merits and demerits, the most suitable technique should be selected based on the kind of erythrocyte enzyme types and sample conditions. On the other hand, non-equilibrium IEF is a rapid method because isozymes are detected on the basis of their charge differences under non-equilibrium conditions. Moreover, the appropriate addition separators increases the charge difference and provides a good resolution within a shorter time. Addition of more separators produces a narrow pH range in the gel and takes a substantially longer time to reach the optimum pH range for charge difference.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Horizontal two-dimensional (2-D) electrophoresis with immobilized pH gradients (IPG) in the first dimension for buffer soluble proteins and for complex proteins solubilized in the presence of Nonidet P-40 (G?rg et al., Electrophoresis 1987, 8, 45-51), has been extended to analyze basic proteins of yeast cells focused under non-equilibrium and equilibrium conditions. Transient state isoelectric focusing (IEF) in IPG gels revealed sample smearing and background staining, displaying horizontal streaks in the resultant 2-D patterns. Inclusion of 0.5% carrier ampholytes (CA) to the IPG gel (IPG-CA), resulted in the formation of many sharp protein bands after transient state IEF with resultant distinct spots in the 2-D patterns; however, resolution was poor and the gel contained heavy background staining. With prolonged focusing time, background staining disappeared and there was less difference in the final steady state IEF patterns obtained with IPG and IPG-CA. Reduction of the Immobiline concentration to one third the manufacturer's recommended amount did not improve IEF resolution with respect to streaking and background staining under either transient state or equilibrium conditions. In general, spot intensities were less on 2-D gels using diluted IPG gels than with "standard" IPG gels. Optimization of 2-D electrophoresis with IPGs in the first dimension was strongly related to IEF conditions. The use of IPG gels focused to equilibrium should not only improve inter-gel reproducibility and resolution but also the quality of the final 2-D patterns with respect to background staining and horizontal streaking.  相似文献   

3.
Phenotyping of erythrocyte acid phosphatase (EAP) and esterase D (ESD) by cellulose acetate membrane isoelectric focusing (CAM-IEF) under a nonequilibrium condition is described. In an attempt to improve the method of CAM-IEF, we shortened the electrode distance to provide a higher field strength at a given (low) voltage. Various carrier ampholytes for EAP typing and various chemical separators for ESD typing were also tested. Good separations were obtained after 30 min IEF for EAP typing and 25 min for ESD typing. When applied to blood stains and stored for various periods at room temperature, the stains up to 8 months old could still be phenotyped for EAP and those up to 4 weeks old for ESD. CAM-IEF is suitable for routine forensic work of EAP and ESD phenotyping.  相似文献   

4.
We previously demonstrated the separation of proteins by isoelectric focusing (IEF) over pH 4-8 immobilized pH gradients (IPGs) over 54 cm (Poland et al., Electrophoresis 2003, 24, 1271). Here we show that similar results can be conveniently achieved using commercially available IPGs of appropriate pH ranges positioned end-on-end in series during electrophoresis, which we term "daisy chain IEF". Proteins efficiently electrophorese from one IPG to another during IEF by traversing buffer-filled porous bridges between the serial IPGs. A variety of materials can function as bridges, including paper, polyacrylamide gels or even IPGs. The quality of two-dimensional (2-D) protein patterns is not apparently worse than that generated by conventional IEF using the same individual IPGs. A major advantage of this method is that sample is consumed efficiently, without the requirement for preliminary steps, such as chamber IEF. This advantage is pronounced when working with extremely limited sources of samples, such as with clinical biopsies or cellular subfractions. The present study was limited by the commercial availability of suitable pH gradients. Proteomics analyses could be further improved if commercial vendors would manufacture IPGs with suitable pH ranges to achieve high resolution (approximately 100 cm) IEF separation of proteins in one electrophoretic step over the pH range 2-12.  相似文献   

5.
A rapid procedure of isoelectric focusing (IEF) of proteins in polyacrylamide rod gels (i.d., 1.1 mm; length, 7.5 cm) is described. The time required for IEF can be reduced to 0.5 h by using high voltages up to 3000 V in the presence or absence of urea in the gels. When used as the first dimension of a two-dimensional technique for IEF sodium dodecyl sulphate electrophoresis, high voltage IEF gives smaller protein spots on the second dimension gel, associated with an increase in resolution. The method has been tested by a two-dimensional separation of an eye sample of the goodeid fish Xenotoca eiseni.  相似文献   

6.
Stastná M  Slais K 《Electrophoresis》2005,26(18):3586-3591
Two-dimensional gel isoelectric focusing (2-D gel IEF) is presented as the combination of the same separation method used consecutively in two directions of the same gel. In this new method, after completion of IEF process in the first dimension the gel was cut into the separate strips, each containing selected analytes together with the appropriate part of the original broad pH gradient, and the strips were rotated by 90 degrees (with regard to the first IEF) and left to diffuse overnight. After diffusion the strips were subjected to the second IEF. During the second IEF, the corresponding narrow part of pH gradient in each strip was restored again, however, now along the strip. The progress of the separation process can be monitored visually by using colored low-molecular-weight isoelectric point (pI) markers loaded into the gel simultaneously with proteins. The unique properties of IEF, focusing and resolution power were enhanced by using the same technique twice. Two forms of beta-lactoglobulin (pI values 5.14 and 5.31, respectively) non-separated in the first IEF were successfully separated in the second dimension at relatively low voltage (330 V) with the resolution power comparable to the high-resolution gels requiring the high voltage during the run and long separation time. Glucose oxidase loaded as diluted solution into ten positions across the gel was finally focused into a single band during 2-D gel IEF. Since the first and second IEF are carried out on the same gel, no losses and contamination of analyte occur. The suggested method can be used for separation/fractionation of complex biological mixtures, similarly as other multidimensional separation techniques applied in proteomics, and can be followed by further processing, e.g., mass spectrometry analysis. The focusing properties of IEF could be useful especially in separation of mixtures, where components are at low concentration levels.  相似文献   

7.
High resolution separation of proteins, based on charge differences, is possible with disc electrophoresis, displacement electrophoresis (isotachophoresis) and notably isoelectric focusing (IEF). Size separation is obtained in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The combination of gel IEF, followed by SDS-PAGE in a second-dimensional slab gel, i.e. two-dimensional gel electrophoresis, affords the highest resolution with up to several thousand spots per gel. Staining of proteins gives high resolution patterns which can be scanned and stored in comprehensive databases. Over the last 10 years the electrophoretic separation in gels and subsequent visualization of nucleic acids (DNA, RNA) and even genes as well as nucleotides have been much improved, making possible efficient mapping of the genes in humans and all other organisms. This has led to the biggest concerted endeavor in the history of science, i.e. the mapping of the human genome, which will be of importance as long as mankind exists. In the last years electrophoresis in capillaries has attracted much interest because for numerous substances, such as proteins nucleic acids, pharmaceuticals, metabolites, and peptides, it offers high resolution on the analytical scale with over 1 million theoretical plates. Electrophoretic methods have unprecedented impact on life sciences, providing a basis for unique advances in biochemistry, molecular biology, genetics, gene technology and medicine.  相似文献   

8.
Huang  T. -L.  Shieh  P. C. H.  Cooke  N. 《Chromatographia》1994,39(9-10):543-548
Chromatographia - An isoelectric focusing (IEF) method in the capillary format with wide linear pH range (pH 3–10) and high resolution has been developed for separations of proteins. The...  相似文献   

9.
Membrane proteins were separated by high resolution two-dimensional (2-D) electrophoresis. On isoelectric focusing (IEF) with immobilized pH gradients severe protein losses in the resulting 2-D map were observed when compared with carrier ampholyte-based IEF. This has been noticed for two different biological systems, namely the chloroplast envelope of spinach and the endocytic vesicles from Dictyostelium discoideum. The possible mechanisms of these losses on immobilized pH gradients are discussed.  相似文献   

10.
Mass spectrometry (MS) techniques are commonly used for protein identification and further analysis of selected protein spots after high resolution 2-D electrophoresis. Complementary gel-free approaches have been developed during the last few years and have shown to be useful tools in modern proteomics. The development and application of various gel-free electrophoresis devices for performing protein fractionation according to the pI differences is therefore a topic of interest. This review describes the current state of isoelectric focusing (IEF) gel-free electrophoresis based on the Agilent offgel 3100 fractionator. The review includes, therefore, (i) an overview on IEF as well as other previous IEF gel-free electrophoresis developments; (ii) offgel fundamentals and future trends; (iii) advantages and disadvantages of current offgel procedures; (iv) requirements of isolated protein pellets for further offgel fractionation; (v) offgel fraction requirements to perform the second dimensional analysis by advance electrophoresis and chromatographic techniques; and (vi) effect of the offgel operating conditions on the stability of metal–protein complexes.  相似文献   

11.
An improved method of high resolution two-dimensional gel electrophoresis was used to study the patterns of protein synthesis in the central nervous system (CNS) of late instar larvae of Drosophila melanogaster. A small number of CNSs was radiolabeled with a mixture of 14C-labeled amino acids or with [35S]methionine, and the pattern of labeled proteins was analyzed. One thousand and forty-five polypeptides, 800 acidic (IEF) and 245 basic (NEPHGE), from the CNS of several wild-type strains have so far been separated and cataloged. All these polypeptides were numbered and compared with our catalog of polypeptides from wing imaginal discs, and quantitative or qualitative changes were detected in more than 23% of the polypeptides. When comparing patterns of label of CNSs we found small quantitative differences in the rate of synthesis between individuals of the same strain, not due to sexual differences, and a minute number of quantitative and qualitative differences between groups of individuals of different strains.  相似文献   

12.
The conductivity properties of natural pH gradient created by carrier ampholytes were studied during the process of isoelectric focusing (IEF). IEF was performed in capillaries (10-30 mm long) or in microchips with the same channel length. A 10-30x reduction of the conductivity of the separation medium was observed during the establishment of pH gradient. Results obtained using different IEF voltages indicate that there is a nonlinear relationship between the conductivity of an established pH gradient and the applied electric field. Our theoretical analysis using a simplified model generated values that reasonably agree with the experimental data. In addition, we found that above a certain electric field ( approximately 300 V/cm), resolution does not increase with the applied voltage as predicated; we observed band-broadening and gel breakdown. The approach presented in this work can be used for optimization of the IEF separation and judicious selection of IEF conditions.  相似文献   

13.
Das C  Fan ZH 《Electrophoresis》2006,27(18):3619-3626
This paper describes the investigation on the effects of separation length and voltage on IEF in a plastic microfluidic device. A LIF, whole-channel imaging detection (WCID) system was developed to monitor proteins while they were moving under an electric field. IEF was carried out in a separation medium consisting of carrier ampholytes and a mixture of linear polymers (hydroxyethylcellulose and hydroxypropylcellulose). We found that the IEF separation resolution is essentially independent of separation length when the same voltage is applied, which agrees with the theory. This result supports the notion that IEF in a microfabricated device leads to more rapid analysis without sacrificing the resolving power. A higher separation voltage also brought about more rapid analysis and superior separation resolution. IEF of two proteins (green fluorescence protein and R-phycoerythrin) was achieved in 1.5 min when 500 V was applied across a 1.9-cm channel. We found that a linear relationship exists between the focusing time and the inverse of the electrical field strength. In addition, we confirmed the phenomenon in which the pH gradient was compressed to the middle of a channel, and we found that the relative amount of the gradient compression decreased with the channel length.  相似文献   

14.
Ruan Y  Wan M 《Electrophoresis》2007,28(18):3333-3340
The separation of integral and peripheral membrane proteins is still a challenge, although many achievements have been made in the 2-DE-based membrane proteomics. Using a human breast cancer cell line, MCF-7, we investigated the influences of Tris, reducing reagents, cup loading, and SDS on membrane protein solubilization and separation by 2-DE. The addition of Tris to the sample solution improved the solubilization of the membrane-enriched fraction, and the best-quality gel patterns were obtained at 20 mM Tris. Tributylphosphine (TBP), a reducing agent, was not optimum in the 2-DE process because it not only decreased the solubilization of hydrophobic proteins but also caused some proteins, such as hsp60, prohibitin, and actin, to be resolved to a string of spots. However, when combined with DTT, TBP could improve the resolution of 2-DE patterns. Cup loading significantly facilitated the entrance of membrane proteins into IPG strips and over 1000 protein spots with high resolution were visualized. Adopting this strategy, an ATP synthase alpha chain was resolved into two adjacent spots for the first time in 2-DE gel patterns through the adding DTT in the middle of the IEF. A high SDS concentration in the equilibration buffer enhanced the transfer and increased the staining intensity of 50% of the protein spots in the gels, but also resulted in losses of some spots.  相似文献   

15.
The effect of hair dyes, i.e., temporary, semi-permanent, or permanent hair dyes, or hair bleach on the isoelectric focusing (IEF) hair protein patterns was studied. A permanent hair dye (metallic, alkaline oxidative, or acidic oxidative) and hair bleach induced changes in the IEF hair protein patterns and in the intensity of hair protein bands. The changes in the IEF patterns, caused by the alkaline oxidative dye or the bleach, are considered to result from the combined effect of an alkaline agent and an oxidative agent in the alkaline oxidative dye and in the hair bleach.  相似文献   

16.
Preparation of ion-exchange fiber fabrics by electrospray deposition   总被引:1,自引:0,他引:1  
Ion-exchange fiber (IEF) fabrics were prepared by electrospray deposition (ESD) and post-deposition chemical modification of their surfaces. Nonwoven fibrous fabrics were obtained from the solutions of synthetic polymers-polystyrene (PS) and poly(4-vinylpyridine) (P4VP)-of various concentrations. The diameter of the fiber in the fabrics ranged from 600 nm to 1.70 microm. Cation- and anion-exchange fiber (CEF and AEF) fabrics were obtained from the sulfonation of PS fabrics and the quaternization of P4VP fabrics, respectively. These fabrics were thoroughly characterized by a series of techniques, such as scanning electron microscopy (SEM), permporometry, nitrogen adsorption measurements, and potentiometric titrations. The SEM images showed that the fabrics had a porous structure after their chemical modification. The mean pore size, porosity, and specific surface area of the flow-through pores were 1.67-3.53 microm, about 80%, and 13 m(2)/g, respectively. The ion-exchange capacity was in the range from 0.78 to 1.34 mmol/g. The AEF fabric, on the other hand, showed a high specific surface area, i.e., the Brunauer-Emmett-Teller (BET) surface area of 600 m(2)/g, due to the formation of much smaller pores on the surface of the fiber structure in the fabric. The secondary chemical modification of the nano-microfiber fabrics by ESD provides novel functional materials with a large adsorption capacity and a high catalytic activity.  相似文献   

17.
This paper reports the fractionation of recombinant human tissue plasminogen activator (rtPA) glycoforms, a complex mixture to demonstrate the high resolving power of capillary zone electrophoresis (CZE) and capillary isoelectric focusing (cIEF). rtPA is a glycoprotein with a complex carbohydrate structure. The electropherograms and IEF patterns have been discussed in light of the known carbohydrate structures of rtPA. rtPA was treated with neuraminidase which removes the sialic acids from the carbohydrate chains. The desialylated rtPA was analyzed by both CZE and IEF and the results were compared to those of untreated rtPA. The usefulness of CZE and cIEF in the characterization of glycoproteins proteins is also discussed.  相似文献   

18.
To measure protein isoforms in individual mammalian cells, we report single‐cell resolution isoelectric focusing (scIEF) and high‐selectivity immunoprobing. Microfluidic design and photoactivatable materials establish the tunable pH gradients required by IEF and precisely control the transport and handling of each 17‐pL cell lysate during analysis. The scIEF assay resolves protein isoforms with resolution down to a single‐charge unit, including both endogenous cytoplasmic and nuclear proteins from individual mammalian cells.  相似文献   

19.
An off-gel non-denaturing isoelectric focusing (IEF) method was developed to separate uranium–biomolecule complexes from biological samples as a first step in a multidimensional metalloproteomic approach. Analysis of a synthetic uranium–bovine serum albumin complex demonstrated the focusing ability of the liquid-phase IEF method and the preservation of most of the uranium–protein interactions. The developed method was applied to gill cytosol prepared from zebrafish (Danio rerio) exposed to depleted uranium. The results were compared in terms of resolution, recovery, and protein identities with those obtained by in-gel IEF using an immobilized pH gradient gel strip.  相似文献   

20.
The subforms of MM isozyme of creatine kinase (ATP:creatine N-phosphotransferase, EC 2.7.3.2, CK) in sera obtained from healthy adults and patients were determined by agarose gel isoelectric focusing (IEF). The patients were classified into six groups according to serum CK-MM activities and IEF patterns. The IEF spectra offered useful information on cell hyperplasia, augmented cell membrane permeability, cell destruction and release time of CK-MM in the circulation from the cells for diagnosis, progress observation and prognosis, especially in the cases of chronic hepatic diseases, acute myocardial infarction and muscular dystrophy. Macro CKs were also determined by IEF. Macro CKs could be completely distinguished from each other, and CK isozymes consisting of macro CK type 1 could be presumed by isoelectric points.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号