首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A phase-stabilized femtosecond laser comb is directly used for high-resolution spectroscopy and absolute optical frequency measurements of one- and two-photon transitions in laser-cooled 87Rb atoms. Absolute atomic transition frequencies, such as the 5S1/2 F=2-->7S1/2 F"=2 two-photon resonance measured at 788,794 768,921 (44) kHz, are determined without a priori knowledge about their values. Detailed dynamics of population transfer driven by a sequence of pulses are uncovered and taken into account for the measurement of the 5P states via resonantly enhanced two-photon transitions.  相似文献   

2.
Two-photon Fourier spectroscopy with femtosecond light pulses   总被引:1,自引:0,他引:1  
We demonstrate a Fourier spectrometer that uses intense ultrashort laser pulses. By exciting the 6S(1/2) - 8S(1/2) two-photon transition in atomic cesium vapor, we are able to measure the small hyperfine splitting of the 8S(1/2) excited state. This technique, combining a high spectral resolution with the high peak intensities available to femtosecond laser systems, may offer intriguing opportunities for the study of multiphoton transitions and for spectroscopy in the short-wavelength region.  相似文献   

3.
Chui HC  Ko MS  Liu YW  Shy JT  Peng JL  Ahn H 《Optics letters》2005,30(8):842-844
The absolute frequencies of rubidium 5S-7S two-photon transitions at 760 nm are measured to an accuracy of 20 kHz with an optical frequency comb based on a mode-locked femtosecond Ti:sapphire laser. The rubidium 5S-7S two-photon transitions are potential candidates for frequency standards and serve as important optical frequency standards for telecommunication applications. The accuracy of the hyperfine constant of the 7S1/2 state is improved by a factor of 5 in comparison with previous results.  相似文献   

4.
We present direct observation of the velocity-selective optical pumping of the Rb ground state hyperfine levels induced by 5S(1/2) --> 5P(1/2) femtosecond pulse-train excitation. A modified direct frequency comb spectroscopy based on the fixed frequency comb and a weak cw scanning probe laser was developed. The femtosecond pulse-train excitation of a Doppler-broadened Rb four-level atomic vapor is investigated theoretically in the context of the density matrix formalism and the results are compared with the experiment.  相似文献   

5.
We present experiments demonstrating high-resolution and wide-bandwidth coherent control of a four-level atomic system in a diamond configuration. A femtosecond frequency comb is used to excite a specific pair of two-photon transitions in cold 87Rb. The optical-phase-sensitive response of the closed-loop diamond system is studied by controlling the phase of the comb modes with a pulse shaper. Finally, the pulse shape is optimized resulting in a 256% increase in the two-photon transition rate by forcing constructive interference between the mode pairs detuned from an intermediate resonance.  相似文献   

6.
We demonstrate a versatile new technique that provides a phase coherent link between optical frequencies and the radio frequency domain. The regularly spaced comb of modes of a mode-locked femtosecond laser is used as a precise ruler to measure a large frequency gap between two different multiples (harmonics or subharmonics) of a laser frequency. In this way, we have determined a new value of the hydrogen 1S-2S two-photon resonance, f(1S-2S) = 2 466 061 413 187.29(37) kHz, representing now the most accurate measurement of an optical frequency.  相似文献   

7.
We report on an absolute frequency measurement of the hydrogen 1S-2S two-photon transition in a cold atomic beam with an accuracy of 1.8 parts in 10(14). Our experimental result of 2 466 061 413 187 103(46) Hz has been obtained by phase coherent comparison of the hydrogen transition frequency with an atomic cesium fountain clock. Both frequencies are linked with a comb of laser frequencies emitted by a mode locked laser.  相似文献   

8.
We have measured the 1S-2S transition frequency in atomic hydrogen via two-photon spectroscopy on a 5.8 K atomic beam. We obtain f(1S-2S) = 2,466,061,413,187,035 (10) Hz for the hyperfine centroid, in agreement with, but 3.3 times better than the previous result [M. Fischer et al., Phys. Rev. Lett. 92, 230802 (2004)]. The improvement to a fractional frequency uncertainty of 4.2 × 10(-15) arises mainly from an improved stability of the spectroscopy laser, and a better determination of the main systematic uncertainties, namely, the second order Doppler and ac and dc Stark shifts. The probe laser frequency was phase coherently linked to the mobile cesium fountain clock FOM via a frequency comb.  相似文献   

9.
A frequency comb is generated with a chromium-doped forsterite femtosecond laser, spectrally broadened in a dispersion-shifted highly nonlinear fiber, and stabilized. The resultant evenly spaced comb of frequencies ranges from 1.1 to beyond 1.8 microm. The frequency comb was referenced simultaneously to the National Institute of Standards and Technology's optical frequency standard based on neutral calcium and to a hydrogen maser that is calibrated by a cesium atomic fountain clock. With this comb we measured two frequency references in the telecommunications band: one half of the frequency of the d/f crossover transition in 87Rb at 780 nm, and the methane v2 + 2v3 R(8) line at 1315 nm.  相似文献   

10.
We report a new absolute frequency measurement of the Cs 6s-8s two-photon transition measured using frequency comb spectroscopy. The fractional frequency uncertainty is 5x10(-11), a factor of 6 better than previous results. The comb is derived from a stabilized picosecond laser and referenced to an octave-spanning femtosecond frequency comb. The relative merits of picosecond-based frequency combs are discussed, and it is shown that the AC Stark shift of the transition is determined by the average rather than the much larger peak intensity.  相似文献   

11.
We demonstrate a great simplification in the long-standing problem of measuring optical frequencies in terms of the cesium primary standard. An air-silica microstructure optical fiber broadens the frequency comb of a femtosecond laser to span the optical octave from 1064 to 532 nm, enabling us to measure the 282 THz frequency of an iodine-stabilized Nd:YAG laser directly in terms of the microwave frequency that controls the comb spacing. Additional measurements of established optical frequencies at 633 and 778 nm using the same femtosecond comb confirm the accepted uncertainties for these standards.  相似文献   

12.
A frequency comb is generated with a Cr:forsterite femtosecond laser, spectrally broadened through a highly nonlinear optical fiber to span from 1.0 to 2.2 ,m, and stabilized using the f-to-2f self-referencing technique. The repetition rate and the carrier-envelope offset frequency are stabilized to a hydrogen maser, calibrated by a cesium atomic fountain clock. Simultaneous frequency measurement of a 657-nm cw laser by use of the stabilized frequency combs from this Cr:forsterite system and a Ti:sapphire laser agree at the 10(-13) level. The frequency noise of the comb components is observed at 1064, 1314, and 1550 nm by comparing the measured beat frequencies between cw lasers and the supercontinuum frequency combs.  相似文献   

13.
PPLN晶体差频测量飞秒激光脉冲的载波包络相移   总被引:3,自引:0,他引:3       下载免费PDF全文
在飞秒激光频率梳系统中,通常采用自参考技术测量飞秒激光脉冲的载波包络相移,但该技术需要采用光子晶体光纤进行光谱扩展从而增加了系统的不稳定性,这种技术已经制约了高稳定度的飞秒激光频率梳的发展.采用PPLN晶体差频法测量了宽谱钛宝石振荡器输出的7fs激光脉冲的载波包络频移,得到了大于30dB的拍频信号,为研制无光纤的新一代高稳定度光学频率梳奠定了基础.  相似文献   

14.
We implement a simple optical clock based on the F2(2) [P(7), v3] optical transition in methane. A single femtosecond laser's frequency comb undergoes difference frequency generation to provide an IR comb at 3.39 microm with a null carrier-envelope offset. This IR comb provides a phase-coherent link between the 88-THz optical reference and the rf repetition rate. Comparison of the repetition rate signal with a second femtosecond comb stabilized to molecular iodine shows an instability of 1.2 x 10(-13) at 1 s, limited by microwave detection of the repetition rates. The single-sideband phase noise of the microwave signal, normalized to a carrier frequency of 1 GHz, is below -93 dBc/Hz at 1-Hz offset.  相似文献   

15.
We present direct observation of the velocity-selective optical pumping of the Cs ground state hyperfine levels induced by the femtosecond (fs) laser oscillator centered at either D2 (6 2S1/2↦6 2P3/2, 852 nm) or D1 (6 P1/2, 894 nm) cesium line. We utilized previously developed modified direct frequency comb spectroscopy (DFCS) which uses a fixed frequency comb for the excitation and a weak cw scanning probe laser centered at the 133Cs 6 2S1/2↦6 2P3/2 transition (D2 line) for ground levels population monitoring. The frequency comb excitation changes the usual Doppler absorption profile into a specific periodic, comblike structure. The mechanism of the velocity selective population transfer between the Cs ground state hyperfine levels induced by fs pulse train excitation is verified in a theoretical treatment of the multilevel atomic system subjected to a pulse train resonant field interaction.  相似文献   

16.
We report a mode-locked Ti:sapphire femtosecond laser emitting 42 fs pulses at a 10 GHz repetition rate. When operated with a spectrally integrated average power greater than 1 W, the associated femtosecond laser frequency comb contains approximately 500 modes, each with power exceeding 1 mW. Spectral broadening in nonlinear microstructured fiber yields comb elements with individual powers greater than 1 nW over approximately 250 nm of spectral bandwidth. The modes of the emitted comb are resolved and imaged with a simple grating spectrometer and digital camera. Combined with absorption spectroscopy of rubidium vapor, this approach permits identification of the mode index and measurement of the carrier envelope offset frequency of the comb.  相似文献   

17.
The absolute frequency of the In(+) 5s(2) (1)S(0)5s5p (3)P(0) clock transition at 237 nm was measured with an accuracy of 1.8 parts in 10(13). Using a phase-coherent frequency chain, we compared the (1)S(0)(3)P(0) transition with a methane-stabilized HeNe laser at 3.39 mum, which was calibrated against an atomic cesium fountain clock. A frequency gap of 37 THz at the fourth harmonic of the HeNe standard was bridged by a frequency comb generated by a mode-locked femtosecond laser. The frequency of the In(+) clock transition was found to be 1 267 402 452 899.92 (0.23) kHz, the accuracy being limited by the uncertainty of the HeNe laser reference. This result represents an improvement in accuracy of more than 2 orders of magnitude over previous measurements of the line and now stands as what is to our knowledge the most accurate measurement of an optical transition in a single ion.s.  相似文献   

18.
We have performed sub-Doppler spectroscopy on the narrow intercombination line of cold calcium atoms using the amplified output of a femtosecond laser frequency comb. Injection locking of a 657-nm diode laser with a femtosecond comb allows for two regimes of amplification, one in which many lines of the comb are amplified, and one where a single line is predominantly amplified. The output of the laser in both regimes was used to perform kilohertz-level spectroscopy. This experiment demonstrates the potential for high-resolution absolute-frequency spectroscopy over the entire spectrum of the frequency comb output using a single high-finesse optical reference cavity.  相似文献   

19.
利用汞原子6~1S_0—7~1S_0双光子共振四波和频产生了125nm的相干辐射.对双光子共振增强效应、双光子共振克尔(Kerr)效应进行了研究.讨论了平面波和聚焦情况下最佳相位匹配的条件.实验中还观测到了四波参量振荡和四波差频的信号输出.  相似文献   

20.
We have measured the frequency of the 6s(2)S(1/2)(2)-5d D(3/2)(2) electric-quadrupole transition of (171)(Yb) (+) with a relative uncertainty of 1x10(-14) , nu(Yb)=688358 979309312Hz +/-6Hz . We used a femtosecond frequency comb generator to phase-coherently link the optical frequency derived from a single trapped ion to a cesium-fountain-controlled hydrogen maser. This measurement is one of the most accurate measurements of optical frequencies ever reported, and it represents a contribution to the development of optical clocks based on a (171)Yb(+)-ion standard.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号