首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The adsorption of polyelectrolyte (PE) multilayers and complexes, obtained from both high- and low-charge polyelectrolytes, was studied on silica and on cellulose model surfaces by quartz crystal microbalance with dissipation (QCM-D). The film properties acquired with the different strategies were compared. When polyelectrolytes were added on an oppositely charged surface in sequence to form multilayers both the change in frequency and dissipation increased. The changes in frequency and dissipation were clearly higher if low-charge PEs were used in the multilayer formation. The substrate, silica or cellulose, did not affect the adsorption behaviour of low-charge PEs and only minor differences were seen in the adsorbed amounts and changes in dissipation of high-charge PEs between SiO2 and cellulose. The complexes formed by low-charge PEs had higher changes in frequency and dissipation at low ionic strength on both surfaces, while the complexes formed from high-charge polyelectrolytes adsorbed more at high salt concentration. The complexes of low-charge polyelectrolytes adsorbed more on silica, while the complexes formed by high-charge PEs formed thicker layers on cellulose. The charge ratio had a significant effect on the adsorption and the highest changes in frequency and dissipation were obtained in the anionic/cationic charge ratio of 0.5–0.6. Generally, the multilayers and complexes formed by low-charge polyacrylamides adsorbed highly and formed rather thick layers on both surfaces, unlike the high-charge PEs which formed thin layers using either one of the addition techniques.  相似文献   

2.
Using molecular dynamics simulations, we study the effect of the brush grafting density and degree of polymerization of the side chains on conformations of brush layers made of charged bottle-brush macromolecules. The thickness of the brush layer first decreases with increasing brush grafting density; then, it saturates and remains constant in the wide interval of the brush grafting densities. The brush layers consisting of the bottle-brush macromolecules with longer side chains have a larger layer thickness. The elongation of the side chains of the bottle-brush macromolecules decreases with increasing brush grafting density. This contraction of the side chains is due to counterion condensation inside the volume occupied by bottle-brushes. Our simulations showed that counterion condensation is a multiscale process reflecting different symmetries of the bottle-brush layer.  相似文献   

3.
Deposition of positively charged nanosized latex particles onto planar silica and cellulose substrates was studied in monovalent electrolyte solutions at pH 9.5. The deposition was probed in situ with optical reflectometry in a stagnation point flow cell. The surface coverage can be estimated reliably with island film theory as well as with a homogeneous film model, as confirmed with atomic force microscopy (AFM). The deposition kinetics on the bare surface was of first order with respect to the particle concentration, whereby the deposition rate was close to the value expected for a perfect collector. The efficiency coefficient, which was defined as the ratio of the experimental and theoretical deposition rate constants, was in the range from 0.3 to 0.7. Subsequently, the surface saturated and a limiting maximum coverage was attained (i.e., blocking). These trends were in qualitative agreement with predictions of the random sequential absorption (RSA) model, where electrostatic interactions between the particles were included. It was observed, however, that the substrate strongly influenced the maximum coverage, which was substantially higher for silica than for cellulose. The major conclusion of this work was that the nature of the substrate played an important role in a saturated layer of deposited colloidal particles.  相似文献   

4.
The effects of charge density, pH, and salt concentration on polyelectrolyte adsorption onto the oxidized surface of silicon wafers were studied using stagnation point adsorption reflectometry and quartz crystal microgravimetry. Five different polyelectrolytescationic polyacrylamides of four charge densities and one cationic dextranwere examined. The adsorption kinetics was characterized using each technique, and the adsorption kinetics observed was in line with the impinging jet theory and the theory for one-dimensional diffusion, respectively. The polyelectrolyte adsorption increased with pH as an effect of the increased silica surface charge. A maximum in the saturation adsorption for both types of polyelectrolytes was found at 10 mM NaCl concentration. A significant adsorption also occurred at 1 M NaCl, which indicated a significant nonionic contribution to the adsorption mechanism. The fraction of solvent in the adsorbed layer was determined to be 70-80% by combining the two analysis techniques. This indicated a loose structure of the adsorbed layer and an extended conformation at the surface, favoring loops and tails. However, considering the solution structure with a hydrodynamic diameter larger than 100 nm for the CPAM and a thickness of the adsorbed layer on the order of 10 nm, the results showed that the adsorption is accompanied by a drastic change in polymer conformation. Furthermore, this conformation change takes place on a time scale far shorter than seconds.  相似文献   

5.
Interactions between tethered layers composed of aggrecan (charged bottle-brush) macromolecules are responsible for the molecular origin of cartilage biomechanical behavior. To elucidate the role of the electrostatic forces in interaction between bottle-brush layers, we have performed molecular dynamics simulations of charged and neutral bottle-brush macromolecules tethered to substrates. In the case of charged bottle-brush layers, the disjoining pressure P between two brush layers in salt-free solutions increases with decreasing distance D between substrates as P ∝ D(-1.8). A stronger dependence of the disjoining pressure P on the surface separation D was observed for neutral bottle-brushes, P ∝ D(-4.6), in the same interval of disjoining pressures. These scaling laws for dependence of disjoining pressure P on distance D are due to bending energy of the bottle-brush macromolecules within compressed brush layers. The weaker distance dependence observed in polyelectrolyte bottle-brushes is due to interaction between counterion clouds surrounding the bottle-brush macromolecules preventing strong brush overlap.  相似文献   

6.
For the first time to the knowledge of the authors, well-defined and stable lignin model surfaces have been utilized as substrates in polyelectrolyte adsorption studies. The adsorption of polyallylamine (PAH), poly(acrylic acid) (PAA), and polyelectrolyte complexes (PECs) was monitored using quartz crystal microgravimetry with dissipation (QCM-D). The PECs were prepared by mixing PAH and PAA at different ratios and sequences, creating both cationic and anionic PECs with different charge levels. The adsorption experiments were performed in 1 and 10 mM sodium chloride solutions at pH 5 and 7.5. The highest adsorption of PAH and cationic PECs was found at pH 7.5, where the slightly negatively charged nature of the lignin substrate is more pronounced, governing electrostatic attraction of oppositely charged polymeric substances. An increase in the adsorption was further found when the electrolyte concentration was increased. In comparison, both PAA and the anionic PEC showed remarkably high adsorption to the lignin model film. The adsorption of PAA was further studied on silica and was found to be relatively low even at high electrolyte concentrations. This indicated that the high PAA adsorption on the lignin films was not induced by a decreased solubility of the anionic polyelectrolyte. The high levels of adsorption on lignin model surfaces found both for PAA and the anionic PAA-PAH polyelectrolyte complex points to the presence of strong nonionic interactions in these systems.  相似文献   

7.
The adsorption of cationic starch (CS) from aqueous electrolyte solutions onto model cellulose film has been investigated by the quartz crystal microbalance with dissipation monitoring (QCM-D) and X-ray photoelectron spectroscopy (XPS). The influence of the electrolyte composition and charge density of CS was examined. The adsorption of CS onto cellulose followed the general trends expected for polyelectrolyte adsorption on oppositely charged surfaces, with some exceptions. Thus, as result of the very low surface charge density of the cellulose surface, highly charged CS did not adsorb in a flat conformation even at low ionic strength. The porosity of the film, however, enabled the penetration of coiled CS molecules into the film at high electrolyte concentrations. Differences between the adsorption behavior of CS on cellulose and earlier observations of the adsorption of the same starches on silica could be explained by the different morphologies and acidities of the hydroxyl groups on the two surfaces.  相似文献   

8.
Adsorption and deposition from turbid solutions are common in many industrial processes but notoriously difficult to investigate using standard optical techniques such as ellipsometry and reflectometry. In this report, we have addressed this problem by employing a quartz crystal microbalance with dissipation monitoring ability, QCM-D. The system under investigation consisted of a cationic polyelectrolyte, poly(vinylamine), PVAm, and an anionic surfactant, sodium dodecyl sulfate, SDS, which were mixed together in 10 mM NaCl solution. The polyelectrolyte and the surfactant readily associate in bulk solution, resulting in increased solution turbidity once large aggregates are formed. The solutions were placed in contact with a polystyrene surface, and the adsorption process was monitored by following the changes in the resonance frequency and dissipation factor. The results obtained can in most cases be evaluated using the Sauerbrey relation, but in some cases a more elaborate analysis is necessary. It is found that PVAm adsorbs to polystyrene in the absence of SDS. In the turbid region, deposition is observed, and the sensed mass exceeds the sum of that obtained for each of the components alone. On the other hand, at high SDS concentrations, the surfactant dominates in the adsorbed layer. Adsorption equilibrium is in most cases established within 1-2 h, the exception being found around the solution composition that results in the formation of charge-neutralized aggregates. In this case, a slow deposition of aggregates persists over prolonged times.  相似文献   

9.
Polyacrylate microgels used as absorbers or viscosifiers in water are known to have these useful qualities reduced in the presence of linear poly-electrolytes. An osmotic deswelling mechanism is postulated whereby the counterions from linear chains sterically excluded from the gel act to draw solvent from the gel phase. This postulate is tested using intrinsic viscosity measurements of Carbopol microgels, made with the linear polyelectrolyte considered as parr of the solvent. The intrinsic viscosity is used to calculate the swollen-to-dry volume ratio for the microgel in the presence or absence of 0.1% linear sodium polyacrylate over a range in ionic strength. Simultaneously, a standard treatment for the free energy of a network of non-Gaussian chains containing fixed charges is modified to include the osmotic effect of the excluded counterions. In the absence of linear polymer, the theory is fit to the data, the fitting parameter being the 3100 monomer units between crosslink sites in the network. In the presence of high (350 000) molecular weight linear polymer, good agreement is found between the observed deswelling and that predicted if the linear chains are totally excluded. Lower molecular weight linear chains are found to give a reduced deswelling which is shown to be self-consistent with their partitioning into the network.Presented in part at the 64th Colloid and Surface Science Symposium, Lehigh University, June 1990  相似文献   

10.
Surface properties of a series of cationic bottle-brush polyelectrolytes with 45-unit-long poly(ethylene oxide) side chains were investigated by phase modulated ellipsometry and surface force measurements. The evaluation of the adsorbed mass of polymer on mica by means of ellipsometry is complex due to the transparency of mica and its birefringence and low dielectric constant. We therefore employed a new method to overcome these difficulties. The charge and the poly(ethylene oxide) side chain density of the bottle-brush polymers were varied from zero charge density and one side chain per segment to one charge per segment and no side chains, thus spanning the realm from a neutral bottle-brush polymer, via a partly charged brush polyelectrolyte, to a linear fully charged polyelectrolyte. The adsorption properties depend crucially on the polymer architecture. A minimum charge density of the polymer is required to facilitate adsorption to the oppositely charged surface. The maximum adsorbed amount and the maximum side chain density at the surface are obtained for the polymer with 50% charged segments and the remaining 50% of the segments carrying poly(ethylene oxide) side chains. It is found that brushlike layers are formed when 25-50% of the segments carry poly(ethylene oxide) side chains. In this paper, we argue that the repulsion between the side chains results in an adsorbed layer that is non-homogeneous on the molecular level. As a result, not all side chains will contribute equally to the steric repulsion but some will be stretched along the surface rather than perpendicular to it. By comparison with linear polyelectrolytes, it will be shown that the presence of the side chains counteracts adsorption. This is due to the entropic penalty of confining the side chains to the surface region.  相似文献   

11.
The adsorption and viscoelastic properties of layers of a cationic polyelectrolyte (cationic starch, CS, with 2-hydroxy-3-trimethylammoniumchloride as the substituent) adsorbed from aqueous solutions (pH 7.5, added NaCl 0, 1, 100, and 500 mM) on silica were studied with a quartz crystal microbalance with dissipation (QCM-D). Three different starches were investigated (weight-average molecular weights M(w) approximately 8.7 x 10(5) and 4.5 x 10(5) with degree of substitution DS = 0.75 and M(w) approximately 8.8 x 10(5) with DS = 0.2). At low ionic strength, the adsorbed layers are thin and rigid and the amount adsorbed can be calculated using the Sauerbrey equation. When the ionic strength is increased, significant changes take place in the amount of adsorbed CS and the viscoelasticity of the adsorbed layer. These changes were analyzed assuming that the layer can be described as a Voigt element on a rigid surface in contact with purely viscous solvent. It was found that CS with low charge density forms a thicker and more mobile layer with higher viscosity and elasticity than CS with high charge density. The polymers adsorbed on the silica even when the ionic strength was so high that electrostatic interactions were effectively screened. At this high ionic strength, it was possible to study the effect of molecular weight and molecular weight distribution of the CS on the properties of the adsorbed film. Increasing the molecular weight of CS resulted in a larger hydrodynamic thickness. CS with a narrow molecular weight distribution formed a more compact and rigid layer than broadly distributed CS, presumably due to the better packing of the molecules.  相似文献   

12.
The adsorption of bovine serum albumin (BSA) on platinum surfaces with a root-mean-square roughness ranging from 1.49nm to 4.62nm was investigated using quartz crystal microbalance with dissipation (QCM-D). Two different BSA concentrations, 50microg/ml and 1mg/ml, were used, and the adsorption studies were complemented by monitoring the antibody interaction with the adsorbed BSA layer. The adsorption process was significantly influenced by the surface nano-roughness, and it was observed that the surface mass density of the adsorbed BSA layer is enhanced in a non-trivial way with the surface roughness. From a close examination of the energy dissipation vs. frequency shift plot obtained by the QCM-D technique, it was additionally observed that the BSA adsorption on the roughest surface is subject to several distinct adsorption phases revealing the presence of structural changes facilitated by the nano-rough surface morphology during the adsorption process. These changes were in particular noticeable for the adsorption at the low (50microg/ml) BSA concentration. The results confirm that the nano-rough surface morphology has a significant influence on both the BSA mass uptake and the functionality of the resulting protein layer.  相似文献   

13.
The adsorption of complexes of cationic starch, (CS) and a series of homologous sodium alkanoates on silica was studied with the quartz crystal microbalance with dissipation (QCM-D) instrument. The systems were chosen so as to represent CS/surfactant ratios below and above the critical association concentrations of the surfactants but below their critical micelle concentrations. It was found that
– surfactants did not adsorb on cationic polymers that were very tightly bound to the surface;

– surfactants did adsorb on polyelectrolytes forming layers with loops and tails extending into the solution, provided the concentration of surfactant was at least around the critical association concentration (cac) of the surfactant/polymer system;

– adsorption of surfactant was promoted by increasing the surfactant chain length and by adding simple electrolyte that weakened the electrostatic polymer/surface interaction and

– multilayers were formed when the surfactant concentration in solution was well above the cac; their formation was promoted by increasing hydrophobic interactions, e.g. by increasing the surfactant chain length.

Keywords: Adsorption; Cationic starch; Surfactant; Quartz crystal microbalance; Viscoelasticity  相似文献   


14.
The adsorption of human fibrinogen on tantalum oxide, titanium oxide and gold surfaces has been studied by quartz crystal microbalance with dissipation (QCM-D) at 37 degrees C. Two different protein concentrations have been used, one close to physiological concentration (1 mg/ml) and one significantly lower (0.033 mg/ml). To further characterize the adsorbed fibrinogen layer, the subsequent binding of both polyclonal and monoclonal antibodies of fibrinogen is studied. We found that the viscoelastic properties of the fibrinogen layer depends strongly on the initial protein concentration. The trend is generally seen for all three surfaces. The fibrinogen layer on gold and tantalum oxide is found to have the same viscoelastic properties, which are different from those found for the fibrinogen layer adsorbed on titanium oxide. The dependency of the surface chemistry on the viscoelastic properties of the fibrinogen layer is observed directly for the 0.033 mg/ml solution, and indirectly through the antibody response for the 1 mg/ml solution. From this we conclude that the orientation and/or denaturation of fibrinogen on a surface depends on the surface chemistry and the protein concentration in the solution, and that the binding of antibodies is a useful way to detect this difference.  相似文献   

15.
It is studied by spectrofluorimetry the association of ionized cationic micelles (cetyltrimethylammonium bromide, CTAB) with oppositely charged polyelectrolyte [sodium poly(styrenesulfonate), PSSNa]. CTAB provokes a change in the fluorescence intensity emitted by PSSNa. The investigated surfactants form micelle-like aggregates before critical micellar concentration (CMC). Two approaches (binding and partition equilibrium) are used to obtain the association constant, KA, number of CTAB molecules in a binding site, N, and apparent partition coefficient, Γ. Analysis of the parameters as a function of polymer concentration and ionic strength μ is performed. The effect of μ shows an enhancement in association as μ decreases. Furthermore as CMC decreases with μ, experiments have to be performed at rather different CMCs. This causes KA and Γ to increase with μ. The adsorption of polyelectrolyte on the micelle is also studied at the greatest μ using high-performance liquid chromatography (size-exclusion) for the first time, obtaining results similar to those found using spectrofluorimetry.  相似文献   

16.
The adsorption of two cationic amphiphilic polyelectrolytes, which are copolymers of two charged monomers, triethyl(vinylbenzyl)ammonium chloride and dimethyldodecyl(vinylbenzyl)ammonium chloride (which is the amphiphilic one) with different contents of amphiphilic groups (40% (40DT) and 80% (80DT)), onto the hydrophilic silica-aqueous solution interface has been studied by in situ null ellipsometry and tapping mode atomic force microscopy (AFM). Adsorption isotherms for both polyelectrolytes were obtained at 25 degrees C and at different ionic strengths, and the adsorption kinetics was also investigated. At low ionic strength, thin adsorbed layers were observed for both polyelectrolytes. The adsorption increases with polymer concentration and reaches, in most cases, a plateau at a concentration below 50 ppm. For the 80DT polymer, at higher ionic strength, an association into aggregates occurs at concentrations at and above 50 ppm. The aggregates were observed directly by AFM at the surface, and by dynamic light scattering in the solution. The adsorption data for this case demonstrated multilayer formation, which correlates well with the increase in viscosity with the ionic strength observed for 80DT.  相似文献   

17.
The effect of side chain to charge ratio on the frictional properties of adsorbed layers formed by bottle-brush polyelectrolytes with poly(ethylene oxide) side chains has been investigated. The brush polyelectrolytes were preadsorbed from 0.1 mM NaNO(3) solutions onto mica and silica surfaces; the interfacial friction was then measured in polyelectrolyte-free solutions via AFM (with the silica surface acting as the colloidal probe). It was concluded that the decisive factor for achieving favorable lubrication properties is the concentration of nonadsorbing poly(ethylene oxide) side chains in the interfacial region. However, contrary to what may be expected, the results showed that an ideal brush layer structure with the adsorbed polymers adopting comb-like conformation is not necessary for achieving a low coefficient of friction in the asymmetric mica-silica system. In fact, the lowest coefficient of friction (<0.01) under applied pressures as high as 30 MPa was observed for a system with a side chain to charge ratio of 9:1, incapable of forming brush-like layers.  相似文献   

18.
《Colloids and Surfaces》1980,1(3-4):407-423
Flocculation of model silica suspensions by cationic polyelectrolytes was studied using optical and microelectrophoretic techniques. Polymer charge density effects were determined by varying the degree of quaternization or by changing pH, depending on the nature of the amine group present.Charge neutralization appears to be the principal flocculation mechanism, although polymer bridging may play a role once the particle surface charge is significantly reduced. Silica retains a net negative ζ-potential (−25 ± 5 mV) under optimal flocculation conditions. This finding is discussed semi-quantitatively in terms of an “electrostatic patch” adsorption model for flocculation.  相似文献   

19.
20.
The evolution of the texture of silica aerogels during sintering is studied by thermoporometry for both neutral and base catalysed materials.During the densification the macroporous volume drops and the analysis of the mesopore size distribution evolution shows that the collapse of the smallest mesopores is responsible for the macropore volume transformation. However, corrections of the measured volumes are necessary to characterize the most compliant materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号